Research Article
BibTex RIS Cite

ANTIMICROBIAL ACTIVITY OF PROTON SALTS OF 3-(SULFAMOYLPHENYLCARBAMOYL)ACRYLIC ACID DERIVATIVES WITH AMINOPYRIDINE DERIVATIVES

Year 2023, , 264 - 272, 30.09.2023
https://doi.org/10.59313/jsr-a.1311495

Abstract

Ten proton transfer salts (9-18) were synthesized from the reaction of 2-aminopyridine (1), 2-amino-3/4/5/6-methylpyridines (2-5) and 3-aminomethylpyridine (6) with (E)-3-(3/4-sulfamoylphenylcarbamoyl)acrylic acid (7 and 8), respectively. Bacillus subtilis (wild culture), Candida albicans (ATCC 14053) (yeast), Enterococcus faecalis (ATCC 29212) (Gram positive), Escherichia coli (ATCC 25922), Listeria monocytogenes (ATCC 7644), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (NRRL B-767) (Gram negative) bacterial microorganisms have been tested against the antimicrobial evaluation of compounds (1–18). Vancomycin, Cefepime, Levofloxacin and the antifungal substance Fluconazole were used as antibacterial reference compounds for comparing the MIC values of 1-18. Compounds 1, 3-6, 8-13, 15, 17 and 18 for E. faecalis, 5 for B. subtilis, 1, 3-12, 15, 17 and 18 for S. aureus, 3, 9, 10, 13, 15 and 17 for L. monocytogenes, 16 for E. Coli and 4 for P. aeruginosa the best effect are observed. Proton transfer salts {9, 14, 15 and 17} were showed higher effect than Fluconazole while other compounds (except compounds 2 and 4) had similar effects with Fluconazole. The compounds 2 and 4 showed less activity than Fluconazole.

Supporting Institution

Kütahya Dumlupınar Üniversitesi

Project Number

2013/36, 2019/12

Thanks

This work was supported by Kütahya Dumlupınar University Research Foundation (Grant No: 2013/36 and 2019/12) and was carried out at the Chemistry Department of same University.

References

  • [1] Root, M.J. and MacKinnon, R. (1994). Two identical noninteracting sites in an ion channel revealed by proton transfer. Science, 265, 1852-1856.
  • [2] Armentano, D., De Munno, G., Mastropietro, T. F., Julve, M. and Lloret, F. (2005). Intermolecular proton transfer in solid phase, a rare example of crystal-to-crystal transformation from hydroxo-to oxo-bridged iron (III) molecule-based magnet. Journal of the American Chemical Society, 127, 10778-10779.
  • [3] Chen, K. (2000). Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 405, 814-817.
  • [4] Chen, K. Y., Lai, C. H., Hsu, C. C., Ho, M. L., Lee, G. H. and Chou, P. T. (2007). Ortho green fluorescence protein synthetic chromophore; excited-state intramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. Journal of the American Chemical Society, 129, 4534-4535.
  • [5] Dellago, C. and Hummer, G. (2006). Kinetics and mechanism of proton transport across membrane nanopores. Physical Review Letters, 97, 245901.
  • [6] Luecke, H., Richter, H.T. and Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934-1937.
  • [7] Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. and Dencher, N. A. (1994). Proton migration along the membrane surface and retarded surface to bulk transfer. Nature, 370, 379-382.
  • [8] Gupta, S. K. S. (2016). Proton transfer reactions in apolar aprotic solvents. Journal of Physical Organic Chemistry, 29, 251-264.
  • [9] Park, S., Kwon, O. H., Kim, S., Park, S., Choi, M. G., Cha, M., Park, S. Y. and Jang, D. J. (2005). Imidazole-based excited-state intramolecular proton-transfer materials, synthesis and amplified spontaneous emission from a large single crystal. Journal of the American Chemical Society, 127, 10070-10074.
  • [10] Moghimi, A., Alizadeh, R., Shokrollahi, A., Aghabozorg, H., Shamsipur, M. and Shockravi, A. (2005). First anionic 1,10-phenanthroline-2,9-dicarboxylate containing metal complex obtained from a novel 1:1 proton−transfer compound, Synthesis, characterization, crystal structure, and solution studies. Inorganic Chemistry, 42, 1616-1624.
  • [11] Nichols, D. A., Hargis, J. C., Sanishvili, R., Jaishankar, P., Defrees, K., Smith, E. W., Wang, K. K., Prati, F., Renslo, A. R., Woodcock, H. L. and Chen, Y. (2015). Ligand-induced proton transfer and low-barrier hydrogen bond revealed by x-ray crystallography. Journal of the American Chemical Society, 137, 8086-8095.
  • [12] Gerlits, O., Wymore, T., Das, A., Shen, C. H., Parks, J. M., Smith, J. C., Weiss, K. L., Keen, D. A., Blakeley, M. P., Louis, J. M., Langan, P., Weber, I. T. and Kovalevsky, A. (2016). Long-range electrostatics-induced two-proton transfercaptured byneutron crystallography in an enzymecatalytic site. Angewandte Chemie, 55, 4924-4927.
  • [13] Horiuchi, S. and Tokura, Y. (2008). Organic ferroelectrics. Nature Materials, 7, 357-366.
  • [14] Horiuchi, S., Kumai, R. and Tokura, Y. (2007). A supramolecular ferroelectric realized by collective proton transfer. Angewandte Chemie, 46, 3497-3501.
  • [15] Bolton, O. and Matzger, A. J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angewandte Chemie, 50, 8960-8963.
  • [16] Yoon, M., Suh, K., Natarajan, S. and Kim, K. (2013). Proton conduction in metal-organic frameworks and related modularly built porous solids. Angewandte Chemie, 52, 2688-2700.
  • [17] Shimizu, G. K., Taylor, J. M. and Kim, S. (2013). Proton conduction with metal-organic frameworks. Science, 341, 354-355.
  • [18] Jayanalina, T., Rajarajan, G., Boopathi, K. and Sreevani, K. (2015). Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal, 2-amino-5-chloropyridinium-L-tartarate. Journal of Crystal Growth, 426, 9-14.
  • [19] Asselberghs, I., Zhao, Y., Clays, K., Persoons, A., Comito, A. and Rubin, Y. (2002). Reversible switching of molecular second-order nonlinear optical polarizability through proton-transfer. Chemical Physics Letters, 364, 279-283.
  • [20] Adamson, A., Guillemin, J.C. and Burk, P. (2015). Proton transfer reactions of hydrazine-boranes. Journal of Physical Organic Chemistry, 28, 244-249.
  • [21] Cochlin, D. (2014). Graphene’s promise for proton transfer in fuel cell membranes. Fuel Cells Bulletin, 2014, 12-12.
  • [22] Lototskyy, M. V., Tolj, I., Davids, M. W., Klochko, Y. V., Parsons, A., Swanepoel, D., Ehlers, R., Louw, G., Westhuizen, B., Smith, F., Pollet, B.G., Sita, C. and Linkov, V. (2016). Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module. International Journal of Hydrogen Energy, 41, 13831-13842.
  • [23] Spry, D.B. and Fayer, M. D. (2009). Proton transfer and proton concentrations in protonated Nafion fuel cell membranes. Journal of Physical Chemistry B, 113, 10210-10221.
  • [24] Steed, J. W. (2013). The role of co-crystals in pharmaceutical design. Trends in Pharmacological Sciences, 34, 185-193.
  • [25] Bica, K., Shamshina, J., Hough, W. L., MacFarlane, D. R and Rogers, R. D. (2011). Liquid forms of pharmaceutical co-crystals, exploring the boundaries of salt formation. Chemical Communications, 47, 2267-2269.
  • [26] Aghabozorg, H., Sadrkhanlou, E., Shokrollahi, A., Ghaedi, M. and Shamsipur, M. (2009). Synthesis, characterization, crystal structures, and solution studies of Ni(II), Cu(II) and Zn(II) complexes obtained from pyridine-2,6-dicarboxylic acid and 2,9-dimethyl-1,10-phenanthroline. Journal of the Iranian Chemical Society, 6(1), 55-70.
  • [27] Jan, M. S., Ahmad, S., Hussain, F., Ahmad, A., Mahmood, F., Rashid, U., Abid, O.R., Ullah, F., Ayaz, M. and Sadiq, A. (2020). Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. European Journal of Medicinal Chemistry, 186, 111863.
  • [28] Bapna, S., Hiran, B. L. and Jain, S. (2015). Antimicrobial evaluation of maleimide monomers, homopolymers and copolymers containing azo, sulfonamide and thiazole groups. Journal of Advances in Chemistry, 11(1), 3404-3415.
  • [29] Erol, I. (2022). Synthesis and characterization of novel sulfonamide functionalized maleimide polymers, Conventional kinetic analysis, antimicrobial activity and dielectric properties. Journal of Molecular Structure, 1255, 132362.
  • [30] Nicklaus, M. C., Neamati, N., Hong, H., Mazumder, A., Sunder, S., Chen, J., Milne, G. W. A. and Pommier, Y. (1997). HIV-1 integrase pharmacophore, discovery of inhibitors through three-dimensional database searching. Journal of Medicinal Chemistry, 40(6), 920-929.
  • [31] Oktay, K., Kose, L. P., Sendil, K., Gultekin, M. S., Gulcin, I. and Supuran, C. T. (2016). The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acids derivatives and determination of their inhibition properties against human carbonic anhydrase I and II isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 939-945.
  • [32] Yenikaya, C., Ilkimen, H., Demirel, M. M., Ceyhan, B., Bulbul, M. and Tunca, E. (2016). Preparation of two maleic acid sulfonamide salts and their copper(II) complexes and antiglaucoma activity studies. Journal of the Brazilian Chemical Society, 27(10), 1706-1714.
  • [33] İlkimen, H., Yenikaya, C., İmdat, G., Tunca, E. and Bülbül, M. (2017). Synthesis and characterization of proton transfer salts between 2-aminopyridine derivatives and maleamic acid derivate containing sulfonamide and their Cu(II) complexes, and investigation of their effects on human erythrocyte carbonic anhydrase isoenzymes. Suleyman Demirel University Journal of Natural and Applied Sciences, 21(2), 480-494.
  • [34] İlkimen, H., Yenikaya, C., Bülbül, M. and İmdat, G. (2017). Synthesis and characterization of proton transfer salt between maleamicacid derivative including sulfonamide moiety and 2-aminopyridine and preparation of their Co(II) and Cu(II) complexes and investigation of inhibition properties on carbonic anhydrase isoenzymes. Celal Bayar University Journal of Science, 13(1), 211-225.
  • [35] İlkimen, H. and Yenikaya, C. (2022). Synthesis and characterization of proton transfer salts of 2-aminobenzothiazole derivatives. Bayburt University Journal of Science, 5(1), 52-68.
  • [36] İlkimen, H. and Yenikaya, C. (2022). Synthesis and characterization of proton salts of aminopyridine derivatives and (E)-3-(4-sulfamoylphenylcarbamoyl)acrylic acid. Sinop University Journal of Natural Sciences, 7(1), 57-50.
  • [37] İlkimen, H., Yenikaya, C. and Gülbandılar A. (2023). Antimicrobial activity of (E)-3-(4-sulfamoylphenylcarbamoyl)acrylic acid derivatives. Journal of Scientific Reports-A, 52, 365-375.
  • [38] Koneman, E. W., Allen, S. D. and Winn, W. C. (1997). Colour atlas and textbook of diagnostic microbiology (Lippincott Raven Pub, Philadelphia).
  • [39] Kaplancıklı, Z. A., Zitouni, G. T., Ozdemir, A., Revial, G. and Güven, K. (2007). Synthesis and antimicrobial activity of some thiazolyl-pyrazoline derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 182, 749-764.
  • [40] Seferoglu, Z., Ertan, N., Yılmaz, E. and Uraz, G. (2008). Synthesis, spectral characterisation and antimicrobial activity of new disazo dyes derived from heterocyclic coupling components. Coloration Technology, 124, 27-35.
Year 2023, , 264 - 272, 30.09.2023
https://doi.org/10.59313/jsr-a.1311495

Abstract

Project Number

2013/36, 2019/12

References

  • [1] Root, M.J. and MacKinnon, R. (1994). Two identical noninteracting sites in an ion channel revealed by proton transfer. Science, 265, 1852-1856.
  • [2] Armentano, D., De Munno, G., Mastropietro, T. F., Julve, M. and Lloret, F. (2005). Intermolecular proton transfer in solid phase, a rare example of crystal-to-crystal transformation from hydroxo-to oxo-bridged iron (III) molecule-based magnet. Journal of the American Chemical Society, 127, 10778-10779.
  • [3] Chen, K. (2000). Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 405, 814-817.
  • [4] Chen, K. Y., Lai, C. H., Hsu, C. C., Ho, M. L., Lee, G. H. and Chou, P. T. (2007). Ortho green fluorescence protein synthetic chromophore; excited-state intramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. Journal of the American Chemical Society, 129, 4534-4535.
  • [5] Dellago, C. and Hummer, G. (2006). Kinetics and mechanism of proton transport across membrane nanopores. Physical Review Letters, 97, 245901.
  • [6] Luecke, H., Richter, H.T. and Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934-1937.
  • [7] Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. and Dencher, N. A. (1994). Proton migration along the membrane surface and retarded surface to bulk transfer. Nature, 370, 379-382.
  • [8] Gupta, S. K. S. (2016). Proton transfer reactions in apolar aprotic solvents. Journal of Physical Organic Chemistry, 29, 251-264.
  • [9] Park, S., Kwon, O. H., Kim, S., Park, S., Choi, M. G., Cha, M., Park, S. Y. and Jang, D. J. (2005). Imidazole-based excited-state intramolecular proton-transfer materials, synthesis and amplified spontaneous emission from a large single crystal. Journal of the American Chemical Society, 127, 10070-10074.
  • [10] Moghimi, A., Alizadeh, R., Shokrollahi, A., Aghabozorg, H., Shamsipur, M. and Shockravi, A. (2005). First anionic 1,10-phenanthroline-2,9-dicarboxylate containing metal complex obtained from a novel 1:1 proton−transfer compound, Synthesis, characterization, crystal structure, and solution studies. Inorganic Chemistry, 42, 1616-1624.
  • [11] Nichols, D. A., Hargis, J. C., Sanishvili, R., Jaishankar, P., Defrees, K., Smith, E. W., Wang, K. K., Prati, F., Renslo, A. R., Woodcock, H. L. and Chen, Y. (2015). Ligand-induced proton transfer and low-barrier hydrogen bond revealed by x-ray crystallography. Journal of the American Chemical Society, 137, 8086-8095.
  • [12] Gerlits, O., Wymore, T., Das, A., Shen, C. H., Parks, J. M., Smith, J. C., Weiss, K. L., Keen, D. A., Blakeley, M. P., Louis, J. M., Langan, P., Weber, I. T. and Kovalevsky, A. (2016). Long-range electrostatics-induced two-proton transfercaptured byneutron crystallography in an enzymecatalytic site. Angewandte Chemie, 55, 4924-4927.
  • [13] Horiuchi, S. and Tokura, Y. (2008). Organic ferroelectrics. Nature Materials, 7, 357-366.
  • [14] Horiuchi, S., Kumai, R. and Tokura, Y. (2007). A supramolecular ferroelectric realized by collective proton transfer. Angewandte Chemie, 46, 3497-3501.
  • [15] Bolton, O. and Matzger, A. J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angewandte Chemie, 50, 8960-8963.
  • [16] Yoon, M., Suh, K., Natarajan, S. and Kim, K. (2013). Proton conduction in metal-organic frameworks and related modularly built porous solids. Angewandte Chemie, 52, 2688-2700.
  • [17] Shimizu, G. K., Taylor, J. M. and Kim, S. (2013). Proton conduction with metal-organic frameworks. Science, 341, 354-355.
  • [18] Jayanalina, T., Rajarajan, G., Boopathi, K. and Sreevani, K. (2015). Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal, 2-amino-5-chloropyridinium-L-tartarate. Journal of Crystal Growth, 426, 9-14.
  • [19] Asselberghs, I., Zhao, Y., Clays, K., Persoons, A., Comito, A. and Rubin, Y. (2002). Reversible switching of molecular second-order nonlinear optical polarizability through proton-transfer. Chemical Physics Letters, 364, 279-283.
  • [20] Adamson, A., Guillemin, J.C. and Burk, P. (2015). Proton transfer reactions of hydrazine-boranes. Journal of Physical Organic Chemistry, 28, 244-249.
  • [21] Cochlin, D. (2014). Graphene’s promise for proton transfer in fuel cell membranes. Fuel Cells Bulletin, 2014, 12-12.
  • [22] Lototskyy, M. V., Tolj, I., Davids, M. W., Klochko, Y. V., Parsons, A., Swanepoel, D., Ehlers, R., Louw, G., Westhuizen, B., Smith, F., Pollet, B.G., Sita, C. and Linkov, V. (2016). Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module. International Journal of Hydrogen Energy, 41, 13831-13842.
  • [23] Spry, D.B. and Fayer, M. D. (2009). Proton transfer and proton concentrations in protonated Nafion fuel cell membranes. Journal of Physical Chemistry B, 113, 10210-10221.
  • [24] Steed, J. W. (2013). The role of co-crystals in pharmaceutical design. Trends in Pharmacological Sciences, 34, 185-193.
  • [25] Bica, K., Shamshina, J., Hough, W. L., MacFarlane, D. R and Rogers, R. D. (2011). Liquid forms of pharmaceutical co-crystals, exploring the boundaries of salt formation. Chemical Communications, 47, 2267-2269.
  • [26] Aghabozorg, H., Sadrkhanlou, E., Shokrollahi, A., Ghaedi, M. and Shamsipur, M. (2009). Synthesis, characterization, crystal structures, and solution studies of Ni(II), Cu(II) and Zn(II) complexes obtained from pyridine-2,6-dicarboxylic acid and 2,9-dimethyl-1,10-phenanthroline. Journal of the Iranian Chemical Society, 6(1), 55-70.
  • [27] Jan, M. S., Ahmad, S., Hussain, F., Ahmad, A., Mahmood, F., Rashid, U., Abid, O.R., Ullah, F., Ayaz, M. and Sadiq, A. (2020). Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. European Journal of Medicinal Chemistry, 186, 111863.
  • [28] Bapna, S., Hiran, B. L. and Jain, S. (2015). Antimicrobial evaluation of maleimide monomers, homopolymers and copolymers containing azo, sulfonamide and thiazole groups. Journal of Advances in Chemistry, 11(1), 3404-3415.
  • [29] Erol, I. (2022). Synthesis and characterization of novel sulfonamide functionalized maleimide polymers, Conventional kinetic analysis, antimicrobial activity and dielectric properties. Journal of Molecular Structure, 1255, 132362.
  • [30] Nicklaus, M. C., Neamati, N., Hong, H., Mazumder, A., Sunder, S., Chen, J., Milne, G. W. A. and Pommier, Y. (1997). HIV-1 integrase pharmacophore, discovery of inhibitors through three-dimensional database searching. Journal of Medicinal Chemistry, 40(6), 920-929.
  • [31] Oktay, K., Kose, L. P., Sendil, K., Gultekin, M. S., Gulcin, I. and Supuran, C. T. (2016). The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acids derivatives and determination of their inhibition properties against human carbonic anhydrase I and II isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 939-945.
  • [32] Yenikaya, C., Ilkimen, H., Demirel, M. M., Ceyhan, B., Bulbul, M. and Tunca, E. (2016). Preparation of two maleic acid sulfonamide salts and their copper(II) complexes and antiglaucoma activity studies. Journal of the Brazilian Chemical Society, 27(10), 1706-1714.
  • [33] İlkimen, H., Yenikaya, C., İmdat, G., Tunca, E. and Bülbül, M. (2017). Synthesis and characterization of proton transfer salts between 2-aminopyridine derivatives and maleamic acid derivate containing sulfonamide and their Cu(II) complexes, and investigation of their effects on human erythrocyte carbonic anhydrase isoenzymes. Suleyman Demirel University Journal of Natural and Applied Sciences, 21(2), 480-494.
  • [34] İlkimen, H., Yenikaya, C., Bülbül, M. and İmdat, G. (2017). Synthesis and characterization of proton transfer salt between maleamicacid derivative including sulfonamide moiety and 2-aminopyridine and preparation of their Co(II) and Cu(II) complexes and investigation of inhibition properties on carbonic anhydrase isoenzymes. Celal Bayar University Journal of Science, 13(1), 211-225.
  • [35] İlkimen, H. and Yenikaya, C. (2022). Synthesis and characterization of proton transfer salts of 2-aminobenzothiazole derivatives. Bayburt University Journal of Science, 5(1), 52-68.
  • [36] İlkimen, H. and Yenikaya, C. (2022). Synthesis and characterization of proton salts of aminopyridine derivatives and (E)-3-(4-sulfamoylphenylcarbamoyl)acrylic acid. Sinop University Journal of Natural Sciences, 7(1), 57-50.
  • [37] İlkimen, H., Yenikaya, C. and Gülbandılar A. (2023). Antimicrobial activity of (E)-3-(4-sulfamoylphenylcarbamoyl)acrylic acid derivatives. Journal of Scientific Reports-A, 52, 365-375.
  • [38] Koneman, E. W., Allen, S. D. and Winn, W. C. (1997). Colour atlas and textbook of diagnostic microbiology (Lippincott Raven Pub, Philadelphia).
  • [39] Kaplancıklı, Z. A., Zitouni, G. T., Ozdemir, A., Revial, G. and Güven, K. (2007). Synthesis and antimicrobial activity of some thiazolyl-pyrazoline derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 182, 749-764.
  • [40] Seferoglu, Z., Ertan, N., Yılmaz, E. and Uraz, G. (2008). Synthesis, spectral characterisation and antimicrobial activity of new disazo dyes derived from heterocyclic coupling components. Coloration Technology, 124, 27-35.
There are 40 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Research Articles
Authors

Halil İlkimen 0000-0003-1747-159X

Cengiz Yenikaya 0000-0002-5867-9146

Aysel Gülbandılar 0000-0001-9075-9923

Project Number 2013/36, 2019/12
Publication Date September 30, 2023
Submission Date June 8, 2023
Published in Issue Year 2023

Cite

IEEE H. İlkimen, C. Yenikaya, and A. Gülbandılar, “ANTIMICROBIAL ACTIVITY OF PROTON SALTS OF 3-(SULFAMOYLPHENYLCARBAMOYL)ACRYLIC ACID DERIVATIVES WITH AMINOPYRIDINE DERIVATIVES”, JSR-A, no. 054, pp. 264–272, September 2023, doi: 10.59313/jsr-a.1311495.