EVALUATION OF THE MONITORING OF SURFACE DEFORMATIONS IN OPEN-PIT MINES WITH SENTINEL-1A SATELLITE RADAR DATA
Year 2023,
, 194 - 211, 30.09.2023
Bekir Poyraz
,
Yavuz Gül
,
Fatih Poyraz
Abstract
Accidents and loss of life can occur in surface mines due to large mass displacements (landslides). In order to prevent these irreversible situations, it is very important to identify displacements in advance or to take necessary measures by obtaining early warning signs. Within the scope of this study, satellite radar images (SAR, Synthetic Aperture Radar) obtained from the European Space Agency (ESA) Sentinel-1A satellite were used to reveal the traceability and monitoring sensitivity of deformations and possible mass displacements in the dump area of a mining operation. The results obtained from 2 Global Positioning Systems (GPS) installed in the field were compared with the results obtained from satellite radar data and their compatibility with each other was evaluated. When the horizontal/vertical velocity values obtained by decomposing the Sentinel-1A ascending and descending satellite line of sight (LOS, Line Of Sight) velocities were compared with the horizontal/vertical velocity values of GPS, the results were statistically equal. GPS-based vertical velocities were -131.5 mm/year at GPS1 and -20.7 mm/year at GPS2, while Sentinel-1A-based velocities were -94.5 mm/year at GPS1 and -7.8 mm/year at GPS2. While both GPS and satellite-based vertical deformations show the same direction (in the form of subsidence), the deformation velocity values obtained from satellite radar data are lower than GPS results. Horizontal deformations obtained with satellite radar data could not be determined in the north/south direction due to satellite orbital motions, while they could be partially determined in the east/west direction. GPS-based east/west horizontal velocities were +2.8 mm/year in GPS1 and unsignificant velocity was found in GPS2. Satellite-based east/west horizontal velocity values were +6.8 mm/year at GPS1 and +8.4 mm/year at GPS2.
References
- [1] Hastaoğlu, K. Ö., Gül, Y., Poyraz, F., and Kara, B. C. (2019). Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 83, 101916.
- [2] Poyraz, F., Gül, Y., and Duymaz, B. (2020). Determination of deformations by using the PSI technique at a common dump site ofthree different open-pit marble mines in Turkey. Turkish J. Earth Sci. 29, 1004–1016.
- [3] Hastaoglu, K.O. (2016). Comparing the results of PSInSAR and GNSS on slow motion landslides, Koyulhisar, Turkey. Geomatics, Nat. Hazards Risk 7, 786–803
- [4] Carlà, T., Tofani, V., Lombardi, L., Raspini, F., Bianchini, S., Bertolo, D., Thuegaz, P., and Casagli, N. (2019). Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 335, 62–75.
- [5] Poyraz, B. (2023). Maden işletmelerinde yüzey deformasyonlarının yapay açıklıklı uydu radar görüntüleriyle izlenebilirliğinin araştırılması. (Tez No. 802631) [Doktora Tezi, Sivas Cumhuriyet Üniversitesi], Yükseköğretim Kurulu Tez Merkezi (in Turkish), Sivas.
- [6] Casu, F., Manzo, M., and Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 102, 195–210.
- [7] Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., and Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote Sens, 45, 1142–1153
- [8] Fuhrmann, T., Garthwaite, M., Lawrie, S., and Brown, N. (2018). Combination of GNSS and InSAR for future Australian datums. In: IGNSS Symposium 2018 - International Global Navigation Satellite Systems Association, pp. 1–13.
- [9] Poyraz, F., and Hastaoğlu, K.O. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arab. J. Geosci, 13, 1–11.
- [10] Bányai, L., Bozsó, I., Szűcs, E., Gribovszki, K., and Wesztergom, V. (2023). Monitoring strategy of geological hazards using integrated three-dimensional InSAR and GNSS technologies with case study. Period. Polytech. Civ. Eng.
- [11] Rovira-Garcia, A., Juan, J.M., Sanz, J., González-Casado, G., and Ibáñez, D. (2016). Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J. Geod, 90, 229–240.
- [12] Del Soldato, M., Confuorto, P., Bianchini, S., Sbarra, P., and Casagli, N. (2021). Review of works combining GNSS and InSAR in Europe. Remote Sens. 13, 1684.
- [13] Hu, B., Chen, J., and Zhang, X. (2019). Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors 19, 3181.
- [14] Parizzi, A., Gonzalez, F.R., and Brcic, R. (2020). A covariance-based approach to merging InSAR and GNSS displacement rate measurements. Remote Sens. 12, 300.
- [15] Pawluszek-Filipiak, K., and Borkowski, A. (2020). Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 Data: The case study of Rydułtowy Mine in Poland. Remote Sens. 2020, Vol, 12, Page 242 12, 242.
- [16] Kim, J., Lin, S.Y., Singh, R.P., Lan, C.W., and Yun, H.W. (2021). Underground burning of Jharia coal mine (India) and associated surface deformation using InSAR data. Int. J. Appl. Earth Obs. Geoinf. 103, 102524.
- [17] Gül, Y. (2006). Bazı açık işletmelerdeki değişik kaya birimlerinin taşıma kapasitelerinin araştırılması ve kayaç özellikleri ile ilişkilendirilmesi. (Tez No. 181739) [Doktora Tezi, Sivas Cumhuriyet Üniversitesi], Yükseköğretim Kurulu Tez Merkezi (in Turkish), Sivas.
- [18] Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Eos, Trans. Am. Geophys. Union 92, 234–234.
- [19] Sandwell, D., Mellors, R., Tong, X., Xu, X., Wei, M., and Wessel, P. (2016). GMTSAR: An InSAR processing system based on generic mapping tools (second edition). Scripps institution of oceanography technical report. Livermore, CA (United States).
- [20] Hooper, A., Bekaert, D., Hussain, E., and Spaans, K. (2018). StaMPS/MTI manual version 4.1b. School of Earth and Environment University of Leeds, United Kingdom.
- [21] Arikan, M., Hooper, A., and Hanssen, R. (2010). Radar time series analysis over west Anatolia. In: Lacoste Francis H (editor). Fringe 2009 Proceedings. ESA SP 677. Noordwijk, Netherlands: ESA, pp. 1-6.
- [22] Fuhrmann, T., and Garthwaite, M. C. (2019). Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sensing, 11(3), 241. https ://doi: 10.3390/rs11030241
- [23] Hanssen, R.F. (2001). Radar interferometry: Data interpretation and error analysis. Remote Sensing and Digital Image Processing. Springer Dordrecht, Dordrecht.
- [24] Brouwer, W. (2021). An analysis of the InSAR displacement vector decomposition: InSAR fallacies and the strap-down solution. Delft University of Technology. Master theesis,140pp, Netherlands
- [25] Bektaş, S. (2005). Endirekt ve koşullu ölçülerle dengeleme hesabı. OMÜ yayinlari, Yayin No:118,ISBN 975- 7636-54-1,208 sayfa, OMÜ Basimevi,
- [26] https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php?locale=en (accessed date: 7.11.23).
- [27] Bayık,Ç. (2018). Çok zamanlı ve çok frekanslı SAR-GNSS verileri ile heyelanların araştırılması: Beylikdüzü-Esenyurt örneği. Bülent Ecevit Üniversitesi; Fen Bilimleri Enstitüsü (Doktora Tezi); 137s; Zonguldak
- [28] Çınar, O. (2019). Yapay açıklıklı radar ve GPS/GNSS verileri ile düşey yönlü yüzey deformasyonlarının modellenmesi. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü (Yüksek Lisans Tezi), 91s, Çanakkale
- [29] Cigna, F., Esquivel Ramírez, R., and Tapete, D. (2021). Accuracy of Sentinel-1 PSI and SBAS InSAR displacement velocities against GNSS and geodetic leveling monitoring data. Remote Sensing, 13(23), 4800.
Year 2023,
, 194 - 211, 30.09.2023
Bekir Poyraz
,
Yavuz Gül
,
Fatih Poyraz
References
- [1] Hastaoğlu, K. Ö., Gül, Y., Poyraz, F., and Kara, B. C. (2019). Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 83, 101916.
- [2] Poyraz, F., Gül, Y., and Duymaz, B. (2020). Determination of deformations by using the PSI technique at a common dump site ofthree different open-pit marble mines in Turkey. Turkish J. Earth Sci. 29, 1004–1016.
- [3] Hastaoglu, K.O. (2016). Comparing the results of PSInSAR and GNSS on slow motion landslides, Koyulhisar, Turkey. Geomatics, Nat. Hazards Risk 7, 786–803
- [4] Carlà, T., Tofani, V., Lombardi, L., Raspini, F., Bianchini, S., Bertolo, D., Thuegaz, P., and Casagli, N. (2019). Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 335, 62–75.
- [5] Poyraz, B. (2023). Maden işletmelerinde yüzey deformasyonlarının yapay açıklıklı uydu radar görüntüleriyle izlenebilirliğinin araştırılması. (Tez No. 802631) [Doktora Tezi, Sivas Cumhuriyet Üniversitesi], Yükseköğretim Kurulu Tez Merkezi (in Turkish), Sivas.
- [6] Casu, F., Manzo, M., and Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 102, 195–210.
- [7] Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., and Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote Sens, 45, 1142–1153
- [8] Fuhrmann, T., Garthwaite, M., Lawrie, S., and Brown, N. (2018). Combination of GNSS and InSAR for future Australian datums. In: IGNSS Symposium 2018 - International Global Navigation Satellite Systems Association, pp. 1–13.
- [9] Poyraz, F., and Hastaoğlu, K.O. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arab. J. Geosci, 13, 1–11.
- [10] Bányai, L., Bozsó, I., Szűcs, E., Gribovszki, K., and Wesztergom, V. (2023). Monitoring strategy of geological hazards using integrated three-dimensional InSAR and GNSS technologies with case study. Period. Polytech. Civ. Eng.
- [11] Rovira-Garcia, A., Juan, J.M., Sanz, J., González-Casado, G., and Ibáñez, D. (2016). Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J. Geod, 90, 229–240.
- [12] Del Soldato, M., Confuorto, P., Bianchini, S., Sbarra, P., and Casagli, N. (2021). Review of works combining GNSS and InSAR in Europe. Remote Sens. 13, 1684.
- [13] Hu, B., Chen, J., and Zhang, X. (2019). Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors 19, 3181.
- [14] Parizzi, A., Gonzalez, F.R., and Brcic, R. (2020). A covariance-based approach to merging InSAR and GNSS displacement rate measurements. Remote Sens. 12, 300.
- [15] Pawluszek-Filipiak, K., and Borkowski, A. (2020). Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 Data: The case study of Rydułtowy Mine in Poland. Remote Sens. 2020, Vol, 12, Page 242 12, 242.
- [16] Kim, J., Lin, S.Y., Singh, R.P., Lan, C.W., and Yun, H.W. (2021). Underground burning of Jharia coal mine (India) and associated surface deformation using InSAR data. Int. J. Appl. Earth Obs. Geoinf. 103, 102524.
- [17] Gül, Y. (2006). Bazı açık işletmelerdeki değişik kaya birimlerinin taşıma kapasitelerinin araştırılması ve kayaç özellikleri ile ilişkilendirilmesi. (Tez No. 181739) [Doktora Tezi, Sivas Cumhuriyet Üniversitesi], Yükseköğretim Kurulu Tez Merkezi (in Turkish), Sivas.
- [18] Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Eos, Trans. Am. Geophys. Union 92, 234–234.
- [19] Sandwell, D., Mellors, R., Tong, X., Xu, X., Wei, M., and Wessel, P. (2016). GMTSAR: An InSAR processing system based on generic mapping tools (second edition). Scripps institution of oceanography technical report. Livermore, CA (United States).
- [20] Hooper, A., Bekaert, D., Hussain, E., and Spaans, K. (2018). StaMPS/MTI manual version 4.1b. School of Earth and Environment University of Leeds, United Kingdom.
- [21] Arikan, M., Hooper, A., and Hanssen, R. (2010). Radar time series analysis over west Anatolia. In: Lacoste Francis H (editor). Fringe 2009 Proceedings. ESA SP 677. Noordwijk, Netherlands: ESA, pp. 1-6.
- [22] Fuhrmann, T., and Garthwaite, M. C. (2019). Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sensing, 11(3), 241. https ://doi: 10.3390/rs11030241
- [23] Hanssen, R.F. (2001). Radar interferometry: Data interpretation and error analysis. Remote Sensing and Digital Image Processing. Springer Dordrecht, Dordrecht.
- [24] Brouwer, W. (2021). An analysis of the InSAR displacement vector decomposition: InSAR fallacies and the strap-down solution. Delft University of Technology. Master theesis,140pp, Netherlands
- [25] Bektaş, S. (2005). Endirekt ve koşullu ölçülerle dengeleme hesabı. OMÜ yayinlari, Yayin No:118,ISBN 975- 7636-54-1,208 sayfa, OMÜ Basimevi,
- [26] https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php?locale=en (accessed date: 7.11.23).
- [27] Bayık,Ç. (2018). Çok zamanlı ve çok frekanslı SAR-GNSS verileri ile heyelanların araştırılması: Beylikdüzü-Esenyurt örneği. Bülent Ecevit Üniversitesi; Fen Bilimleri Enstitüsü (Doktora Tezi); 137s; Zonguldak
- [28] Çınar, O. (2019). Yapay açıklıklı radar ve GPS/GNSS verileri ile düşey yönlü yüzey deformasyonlarının modellenmesi. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü (Yüksek Lisans Tezi), 91s, Çanakkale
- [29] Cigna, F., Esquivel Ramírez, R., and Tapete, D. (2021). Accuracy of Sentinel-1 PSI and SBAS InSAR displacement velocities against GNSS and geodetic leveling monitoring data. Remote Sensing, 13(23), 4800.