Research Article
BibTex RIS Cite
Year 2020, Issue: 045, 126 - 142, 31.12.2020

Abstract

References

  • [1] Scalisi A, Morandi B, Inglese P, Lo Bianco R., (2016), Cladode growth dynamics in Opuntia ficus-indica under drought, Environ Exp Bot, 122, 158–167.
  • [2] Salehi E, Emam-Djomeh Z, Askari G, Fathi M., (2019), Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties, Carbohydr Polym, 206, 565–572.
  • [3] Del-Valle V, Hernández-Muñoz P, Guarda A, Galotto MJ., (2005), Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life, Food Chem, 91, 751–756.
  • [4] Taguchi M, Harinder Makkar F, Mounir Louhaichi F, Duffy R, Moretti D., (2017), CROP ECOLOGY, CULTIVATION AND USES OF CACTUS PEAR Editorial support Book design and layout, 26–30.
  • [5] Sáenz C, Sepúlveda E., (2001), Cactus-Pear Juices, J Prof Assoc Cactus Dev, 4, 3–10.
  • [6] Garbelotti ML, Marsiglia DAP, Torres E a. F., (2003), Determination and validation of dietary fiber in food by the enzymatic gravimetric method, Food Chem, 83, 469–473.
  • [7] Gheribi R, Puchot L, Verge P, Jaoued-Grayaa N, Mezni M, Habibi Y, Khwaldia K., (2018), Development of plasticized edible films from Opuntia ficus-indica mucilage: A comparative study of various polyol plasticizers, Carbohydr Polym, 190, 204–211.
  • [8] Allegra A, Sortino G, Inglese P, Settanni L, Todaro A, Gallotta A., (2017), The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit, Food Packag Shelf Life, 12, 135–141.
  • [9] Chaouch MA, Hafsa J, Rihouey C, Le Cerf D, Majdoub H., (2015), Depolymerization of polysaccharides from Opuntia ficus indica: Antioxidant and antiglycated activities, Int J Biol Macromol, 79, 779–786.
  • [10] Lefsih K, Giacomazza D, Dahmoune F, Mangione MR, Bulone D, San Biagio PL, Passantino R, Costa MA, Guarrasi V, Madani K., (2017), Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization, Food Chem, 221, 91–99.
  • [11] Bayar N, Kriaa M, Kammoun R., (2016), Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes, Int J Biol Macromol, 92, 441–450.
  • [12] Allegra A, Inglese P, Sortino G, Settanni L, Todaro A, Liguori G., (2016), The influence of Opuntia ficus-indica mucilage edible coating on the quality of “Hayward” kiwifruit slices, Postharvest Biol Technol, 120, 45–51.
  • [13] Khatabi O, Hanine H, Elothmani D, Hasib A., (2016), Extraction and determination of polyphenols and betalain pigments in the Moroccan Prickly pear fruits (Opuntia ficus indica), Arab J Chem, 9, S278–S281.
  • [14] Lansky EP, Paavilainen HM, Pawlus AD, Newman RA., (2008), Ficus spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents., J Ethnopharmacol, 119, 195–213.
  • [15] Medina-Torres L, Brito-De La Fuente E, Torrestiana-Sanchez B, Katthain R., (2000), Rheological properties of the mucilage gum (Opuntia ficus indica), Food Hydrocoll, 14, 417–424.
  • [16] Majdoub H, Roudesli S, Deratani A., (2001), Polysaccharides from prickly pear peel and nopals of Opuntia ficus-indica: extraction, characterization and polyelectrolyte behaviour, Polym Int, 50, 552–560.
  • [17] Bayar N, Bouallegue T, Achour M, Kriaa M, Bougatef A, Kammoun R., (2017), Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties., Food Chem, 235, 275–282.
  • [18] Lefsih K, Delattre C, Pierre G, Michaud P, Aminabhavi TM, Dahmoune F, Madani K., (2016), Extraction, characterization and gelling behavior enhancement of pectins from the cladodes of Opuntia ficus indica, Int J Biol Macromol, 82, 645–652.
  • [19] Bayar N, Friji M, Kammoun R., (2018), Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal, Food Chem, 241, 127–134.
  • [20] Yilmaz T, Tavman Ş., (2016), Ultrasound assisted extraction of polysaccharides from hazelnut skin, Food Sci Technol Int. doi: 10.1177/1082013215572415
  • [21] Chemat F, Zill-e-Huma, Khan MK., (2011), Applications of ultrasound in food technology: Processing, preservation and extraction., Ultrason Sonochem, 18, 813–35.
  • [22] Chen W, Wang W-P, Zhang H-S, Huang Q., (2012), Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology, Carbohydr Polym, 87, 614–619.
  • [23] Hromádková Z, Ebringerová A, Valachovic P., (2002), Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.)., Ultrason Sonochem, 9, 37–44.
  • [24] Hromádková Z, Ebringerová a, Valachovic P., (1999), Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L., Ultrason Sonochem, 5, 163–8.
  • [25] Yılmaz T, Tavman S., (2017), Modeling and Optimization of Ultrasound Assisted Extraction Parameters using Response Surface Methodology for Water Soluble Polysaccharide Extraction from Hazelnut Skin, J Food Process Preserv. doi: 10.1111/jfpp.12835
  • [26] Benito-Román Ó, Alonso E, Cocero MJ., (2013), Ultrasound-assisted extraction of β-glucans from barley, LWT - Food Sci Technol, 50, 57–63.
  • [27] García A, Alriols MG, Llano-Ponte R, Labidi J., (2011), Ultrasound-assisted fractionation of the lignocellulosic material., Bioresour Technol, 102, 6326–30.
  • [28] Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D., (2014), Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel, J Food Eng, 126, 72–81.
  • [29] Sivakumar V, Anna JL, Vijayeeswarri J, Swaminathan G., (2009), Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather., Ultrason Sonochem, 16, 782–9.
  • [30] Feng H, Barbosa-Canovas G V., Weiss J., (2010), Ultrasound Technologies for Food and Bioprocessing. Springer, New York
  • [31] Patist A, Bates D., (2008), Ultrasonic innovations in the food industry: From the laboratory to commercial production, Innov Food Sci Emerg Technol, 9, 147–154.
  • [32] Felkai-Haddache L, Dahmoune F, Remini H, Lefsih K, Mouni L, Madani K., (2016), Microwave optimization of mucilage extraction from Opuntia ficus indica Cladodes, Int J Biol Macromol, 84, 24–30.
  • [33] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F., (1956), Colorimetric Method for Determination of Sugars and Related Substances, Anal Chem, 28, 350–356.
  • [34] Cheung Y-C, Wu J-Y., (2013), Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus, Biochem Eng J, 79, 214–220.
  • [35] AOAC., (2007), Official Methods of Analysis. 18th edn. AOAC International, Gaithersburg
  • [36] Hromadkova Z, Ebringerova A., (2003), Ultrasonic extraction of plant materials –– investigation of hemicellulose release from buckwheat hulls, Ultrason - Sonochemistry, 10, 127–133.
  • [37] Albalasmeh A a., Berhe AA, Ghezzehei T a., (2013), A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry, Carbohydr Polym, 97, 253–261.
  • [38] Huang S, Ning Z., (2010), Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity., Int J Biol Macromol, 47, 336–41.
  • [39] Zhang Y, Kong L, Yin C, Jiang D, Jiang J, He J, Xiao W., (2013), Extraction optimization by response surface methodology, purification and principal antioxidant metabolites of red pigments extracted from bayberry (Myrica rubra) pomace, LWT - Food Sci Technol, 51, 343–347.
  • [40] Thakur BR, Singh RK, Handa AK., (1997), Chemistry and Uses of Pectin - A Review, Crit Rev Food Sci Nutr, 37, 47–73.
  • [41] Açıkgöz Ç, Poyraz Z., (2006), EXTRACTION AND CHARACTERIZATION OF PECTIN OBTAINED FROM QUINCE( cydonia vulgaris pers. ), Dumlupınar Üniversitesi Fen Bilim Enstitüsü Derg, 27–34.
  • [42] Goycoolea FM, Cárdenas A., (2003), Pectins from Opuntia spp.: A short review, J Prof Assoc Cactus Dev, 5, 17–29.
  • [43] Di Lorenzo F, Silipo A, Molinaro A, Parrilli M, Schiraldi C, D’Agostino A, Izzo E, Rizza L, Bonina A, Bonina F, Lanzetta R., (2017), The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties, Carbohydr Polym, 157, 128–136.
  • [44] Dick M, Dal Magro L, Rodrigues RC, Rios A de O, Flôres SH., (2019), Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: Physicochemical and functional performance, Int J Biol Macromol, 123, 900–909.
  • [45] Prakash Maran J, Manikandan S, Vigna Nivetha C, Dinesh R., (2013), Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design, Arab J Chem. doi: 10.1016/j.arabjc.2013.02.007
  • [46] Prakash Maran J, Manikandan S, Thirugnanasambandham K, Vigna Nivetha C, Dinesh R., (2013), Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide., Carbohydr Polym, 92, 604–11.
  • [47] Prakash Maran J, Manikandan S, Mekala V., (2013), Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box–Behnken design with desirability function, Ind Crops Prod, 49, 304–311.
  • [48] Toma M, Vinatoru M, Paniwnyk L, Mason TJ., (2001), Investigation of the effects of ultrasound on vegetal tissues during solvent extraction, Ultrason Sonochem, 8, 137–142.
  • [49] Bagherian HZokaee Ashtiani., F., Fouladitajar A., and Mohtashamy M., (2011), Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit, Chem. Eng. Process. Process Intensif., 50, 1237–1243.
  • [50] Sundarraj A. A., Thottiam Vasudevan R., and Sriramulu G., (2018), Optimized extraction and characterization of pectin from jackfruit (Artocarpus integer) wastes using response surface methodology, Int. J. Biol. Macromol., 106, 698–703.
  • [51] Sundarraj A. A. and Ranganathan T. V., (2018), Comprehensive review on ultrasound and microwave extraction of pectin from agro-industrial wastes, Drug Invent. Today, 10, 2773–2782.
  • [52] Maran J. P. and Priya B., (2015), Ultrasound-assisted extraction of pectin from sisal waste, Carbohydr. Polym., 115, 732–738, 2015.
  • [53] Forni E, Penci M, Polesello A., (1994), A preliminary characterization of some pectins from quince fruit (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus indica) peel, Carbohydr Polym, 23, 231–234.

CHARACTERIZATION AND PROCESS OPTIMIZATION OF ULTRASOUND EXTRACTED POLYSACCHARIDES FROM THE “OPUNTIA FICUS INDICA" CLADODES

Year 2020, Issue: 045, 126 - 142, 31.12.2020

Abstract

Opuntia Ficus Indica (OFI) cladodes are rich in pectin rich polysaccharides can be used nutraceutical, medical and pharmaceutical purposes as a cheap source of raw material. In this study characterization and Response Surface Methodology (RSM) of ultrasonic assisted extraction (UAE) of water-soluble crude polysaccharides (CPS) of OFI cladodes were studied using Box-Behnken Design (BBD). Effect of power intensity, set temperature and processing time investigated, Optimal conditions for yield maximization is found as 345.5 W, 304.5 K and 28.5 min. respectively with the predicted yield as 18.58% dry base polysaccharide extract and this value was validated by experiments at optimal condition having the value as 18.48±0.35%. General composition of the extracts at the optimal condition was 7.5±2.22% moisture content, 14.4±0.87 ash, 0.18±0.05 protein, 82.12±7.2% total sugar content (SC) in glucose, 72.75±6.8% SC in galacturonic acid in dry basis. Degree of esterification was found 40.57±3.11% proving that extracted polysaccharides was low-methoxy (LM) pectin-based material which can be used a good alternative and cheap source for industrial LM pectin. Additionally, this study depicts the importance of the temperature control and temperature rise of UAE systems since depending on power, time and temperature combination, temperature inside the reactor can be increased 7-11.8%.

References

  • [1] Scalisi A, Morandi B, Inglese P, Lo Bianco R., (2016), Cladode growth dynamics in Opuntia ficus-indica under drought, Environ Exp Bot, 122, 158–167.
  • [2] Salehi E, Emam-Djomeh Z, Askari G, Fathi M., (2019), Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties, Carbohydr Polym, 206, 565–572.
  • [3] Del-Valle V, Hernández-Muñoz P, Guarda A, Galotto MJ., (2005), Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life, Food Chem, 91, 751–756.
  • [4] Taguchi M, Harinder Makkar F, Mounir Louhaichi F, Duffy R, Moretti D., (2017), CROP ECOLOGY, CULTIVATION AND USES OF CACTUS PEAR Editorial support Book design and layout, 26–30.
  • [5] Sáenz C, Sepúlveda E., (2001), Cactus-Pear Juices, J Prof Assoc Cactus Dev, 4, 3–10.
  • [6] Garbelotti ML, Marsiglia DAP, Torres E a. F., (2003), Determination and validation of dietary fiber in food by the enzymatic gravimetric method, Food Chem, 83, 469–473.
  • [7] Gheribi R, Puchot L, Verge P, Jaoued-Grayaa N, Mezni M, Habibi Y, Khwaldia K., (2018), Development of plasticized edible films from Opuntia ficus-indica mucilage: A comparative study of various polyol plasticizers, Carbohydr Polym, 190, 204–211.
  • [8] Allegra A, Sortino G, Inglese P, Settanni L, Todaro A, Gallotta A., (2017), The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit, Food Packag Shelf Life, 12, 135–141.
  • [9] Chaouch MA, Hafsa J, Rihouey C, Le Cerf D, Majdoub H., (2015), Depolymerization of polysaccharides from Opuntia ficus indica: Antioxidant and antiglycated activities, Int J Biol Macromol, 79, 779–786.
  • [10] Lefsih K, Giacomazza D, Dahmoune F, Mangione MR, Bulone D, San Biagio PL, Passantino R, Costa MA, Guarrasi V, Madani K., (2017), Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization, Food Chem, 221, 91–99.
  • [11] Bayar N, Kriaa M, Kammoun R., (2016), Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes, Int J Biol Macromol, 92, 441–450.
  • [12] Allegra A, Inglese P, Sortino G, Settanni L, Todaro A, Liguori G., (2016), The influence of Opuntia ficus-indica mucilage edible coating on the quality of “Hayward” kiwifruit slices, Postharvest Biol Technol, 120, 45–51.
  • [13] Khatabi O, Hanine H, Elothmani D, Hasib A., (2016), Extraction and determination of polyphenols and betalain pigments in the Moroccan Prickly pear fruits (Opuntia ficus indica), Arab J Chem, 9, S278–S281.
  • [14] Lansky EP, Paavilainen HM, Pawlus AD, Newman RA., (2008), Ficus spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents., J Ethnopharmacol, 119, 195–213.
  • [15] Medina-Torres L, Brito-De La Fuente E, Torrestiana-Sanchez B, Katthain R., (2000), Rheological properties of the mucilage gum (Opuntia ficus indica), Food Hydrocoll, 14, 417–424.
  • [16] Majdoub H, Roudesli S, Deratani A., (2001), Polysaccharides from prickly pear peel and nopals of Opuntia ficus-indica: extraction, characterization and polyelectrolyte behaviour, Polym Int, 50, 552–560.
  • [17] Bayar N, Bouallegue T, Achour M, Kriaa M, Bougatef A, Kammoun R., (2017), Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties., Food Chem, 235, 275–282.
  • [18] Lefsih K, Delattre C, Pierre G, Michaud P, Aminabhavi TM, Dahmoune F, Madani K., (2016), Extraction, characterization and gelling behavior enhancement of pectins from the cladodes of Opuntia ficus indica, Int J Biol Macromol, 82, 645–652.
  • [19] Bayar N, Friji M, Kammoun R., (2018), Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal, Food Chem, 241, 127–134.
  • [20] Yilmaz T, Tavman Ş., (2016), Ultrasound assisted extraction of polysaccharides from hazelnut skin, Food Sci Technol Int. doi: 10.1177/1082013215572415
  • [21] Chemat F, Zill-e-Huma, Khan MK., (2011), Applications of ultrasound in food technology: Processing, preservation and extraction., Ultrason Sonochem, 18, 813–35.
  • [22] Chen W, Wang W-P, Zhang H-S, Huang Q., (2012), Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology, Carbohydr Polym, 87, 614–619.
  • [23] Hromádková Z, Ebringerová A, Valachovic P., (2002), Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.)., Ultrason Sonochem, 9, 37–44.
  • [24] Hromádková Z, Ebringerová a, Valachovic P., (1999), Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L., Ultrason Sonochem, 5, 163–8.
  • [25] Yılmaz T, Tavman S., (2017), Modeling and Optimization of Ultrasound Assisted Extraction Parameters using Response Surface Methodology for Water Soluble Polysaccharide Extraction from Hazelnut Skin, J Food Process Preserv. doi: 10.1111/jfpp.12835
  • [26] Benito-Román Ó, Alonso E, Cocero MJ., (2013), Ultrasound-assisted extraction of β-glucans from barley, LWT - Food Sci Technol, 50, 57–63.
  • [27] García A, Alriols MG, Llano-Ponte R, Labidi J., (2011), Ultrasound-assisted fractionation of the lignocellulosic material., Bioresour Technol, 102, 6326–30.
  • [28] Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D., (2014), Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel, J Food Eng, 126, 72–81.
  • [29] Sivakumar V, Anna JL, Vijayeeswarri J, Swaminathan G., (2009), Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather., Ultrason Sonochem, 16, 782–9.
  • [30] Feng H, Barbosa-Canovas G V., Weiss J., (2010), Ultrasound Technologies for Food and Bioprocessing. Springer, New York
  • [31] Patist A, Bates D., (2008), Ultrasonic innovations in the food industry: From the laboratory to commercial production, Innov Food Sci Emerg Technol, 9, 147–154.
  • [32] Felkai-Haddache L, Dahmoune F, Remini H, Lefsih K, Mouni L, Madani K., (2016), Microwave optimization of mucilage extraction from Opuntia ficus indica Cladodes, Int J Biol Macromol, 84, 24–30.
  • [33] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F., (1956), Colorimetric Method for Determination of Sugars and Related Substances, Anal Chem, 28, 350–356.
  • [34] Cheung Y-C, Wu J-Y., (2013), Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus, Biochem Eng J, 79, 214–220.
  • [35] AOAC., (2007), Official Methods of Analysis. 18th edn. AOAC International, Gaithersburg
  • [36] Hromadkova Z, Ebringerova A., (2003), Ultrasonic extraction of plant materials –– investigation of hemicellulose release from buckwheat hulls, Ultrason - Sonochemistry, 10, 127–133.
  • [37] Albalasmeh A a., Berhe AA, Ghezzehei T a., (2013), A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry, Carbohydr Polym, 97, 253–261.
  • [38] Huang S, Ning Z., (2010), Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity., Int J Biol Macromol, 47, 336–41.
  • [39] Zhang Y, Kong L, Yin C, Jiang D, Jiang J, He J, Xiao W., (2013), Extraction optimization by response surface methodology, purification and principal antioxidant metabolites of red pigments extracted from bayberry (Myrica rubra) pomace, LWT - Food Sci Technol, 51, 343–347.
  • [40] Thakur BR, Singh RK, Handa AK., (1997), Chemistry and Uses of Pectin - A Review, Crit Rev Food Sci Nutr, 37, 47–73.
  • [41] Açıkgöz Ç, Poyraz Z., (2006), EXTRACTION AND CHARACTERIZATION OF PECTIN OBTAINED FROM QUINCE( cydonia vulgaris pers. ), Dumlupınar Üniversitesi Fen Bilim Enstitüsü Derg, 27–34.
  • [42] Goycoolea FM, Cárdenas A., (2003), Pectins from Opuntia spp.: A short review, J Prof Assoc Cactus Dev, 5, 17–29.
  • [43] Di Lorenzo F, Silipo A, Molinaro A, Parrilli M, Schiraldi C, D’Agostino A, Izzo E, Rizza L, Bonina A, Bonina F, Lanzetta R., (2017), The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties, Carbohydr Polym, 157, 128–136.
  • [44] Dick M, Dal Magro L, Rodrigues RC, Rios A de O, Flôres SH., (2019), Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: Physicochemical and functional performance, Int J Biol Macromol, 123, 900–909.
  • [45] Prakash Maran J, Manikandan S, Vigna Nivetha C, Dinesh R., (2013), Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design, Arab J Chem. doi: 10.1016/j.arabjc.2013.02.007
  • [46] Prakash Maran J, Manikandan S, Thirugnanasambandham K, Vigna Nivetha C, Dinesh R., (2013), Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide., Carbohydr Polym, 92, 604–11.
  • [47] Prakash Maran J, Manikandan S, Mekala V., (2013), Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box–Behnken design with desirability function, Ind Crops Prod, 49, 304–311.
  • [48] Toma M, Vinatoru M, Paniwnyk L, Mason TJ., (2001), Investigation of the effects of ultrasound on vegetal tissues during solvent extraction, Ultrason Sonochem, 8, 137–142.
  • [49] Bagherian HZokaee Ashtiani., F., Fouladitajar A., and Mohtashamy M., (2011), Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit, Chem. Eng. Process. Process Intensif., 50, 1237–1243.
  • [50] Sundarraj A. A., Thottiam Vasudevan R., and Sriramulu G., (2018), Optimized extraction and characterization of pectin from jackfruit (Artocarpus integer) wastes using response surface methodology, Int. J. Biol. Macromol., 106, 698–703.
  • [51] Sundarraj A. A. and Ranganathan T. V., (2018), Comprehensive review on ultrasound and microwave extraction of pectin from agro-industrial wastes, Drug Invent. Today, 10, 2773–2782.
  • [52] Maran J. P. and Priya B., (2015), Ultrasound-assisted extraction of pectin from sisal waste, Carbohydr. Polym., 115, 732–738, 2015.
  • [53] Forni E, Penci M, Polesello A., (1994), A preliminary characterization of some pectins from quince fruit (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus indica) peel, Carbohydr Polym, 23, 231–234.
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Tuncay Yılmaz This is me 0000-0001-8756-2724

Publication Date December 31, 2020
Submission Date June 30, 2020
Published in Issue Year 2020 Issue: 045

Cite

IEEE T. Yılmaz, “CHARACTERIZATION AND PROCESS OPTIMIZATION OF ULTRASOUND EXTRACTED POLYSACCHARIDES FROM THE “OPUNTIA FICUS INDICA" CLADODES”, JSR-A, no. 045, pp. 126–142, December 2020.