Research Article
BibTex RIS Cite
Year 2020, Issue: 045, 201 - 214, 31.12.2020

Abstract

References

  • [1] Carras, J. N., Day, S. J., Saghafi, A. and Williams, D. J. (2009). Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int. J. of Coal Geology, 78(2), 161–168.
  • [2] Fierro, V., Miranda, J. L., Romero, C., Andrés, J. M., Arriaga, a., Schmal, D. and Visser, G. H. (1999). Prevention of spontaneous combustion in coal stockpiles: Experimental results in coal storage yard. Fuel Processing Technology, 59(1), 23–24.
  • [3] Qi, X., Wang, D., Zhong, X., Gu, J. and Xu, T. (2010). Characteristics of oxygen consumption of coal at programmed temperatures. Mining Science and Technology (China), 20(3), 372–377.
  • [4] Carras, J. N., Young, B. C. (1994). Self-heating of coal and related materials: Models, application and test methods. Progress in Energy and Combustion Science, 20(1), 1–15.
  • [5] Gürdal, G., Hoşgörmez, H., Özcan, D., Li, X., Liu, H. and Song, W. (2015). The properties of Çan Basin coals (Çanakkale—Turkey): Spontaneous combustion and combustion by-products. Int. J. of Coal Geology, 138, 1–15.
  • [6] Wang, H., Dlugogorski, B. Z. and Kennedy, E. M. (2003). Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 29(6), 487–513.
  • [7] Güney, M., (1968). Certain factors affecting the oxidation and spontaneous combustion of coal. University of Nottingham, Mining Dept. Magazine, 20, 71 – 80.
  • [8] Ramlu, M.A., (1991). Mine disastersand mine rescue. A.A. Balkema, Rotterdam, p.397
  • [9] Wang, H., Dlugogorski, B. Z. and Kennedy, E. M. (2003). Analysis of the mechanism of the low-temperature oxidation of coal. Combustion and Flame, 134(1–2), 107–117.
  • [10] Akgün, F., Arisoy, A. (1994). Effect of particle size on the spontaneous heating of a coal stockpile. Combustion and Flame, 99(1), 137–146.
  • [11] Didari, V. (1986). Yeraltı ocaklarında kömürün kendiliğinden yanması ve risk indeksleri. Madencilik Dergisi, 25(4), 29-34.
  • [12] Arisoy, A., Beamish, B. (2015). Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation. Fuel, 139, 107-114.
  • [13] Beamish, B., Lin, Z. and Beamish, R. (2012). Investigating the influence of reactive pyrite on coal self-heating. Proc. of the Twelfth Coal Operators Conference (pp.294-299), Wollongong, Australia.
  • [14] Stracher, G.B.,Prakash, A. and Ellina, V.S. (2010). Coal and peat fires – A global perspective. vol.I: coal, geology and combustion, p.343
  • [15] Gill, F., Browning, E. (1971). Spontaneous combustion in coal mines. Colliery Guardian, 219, 79-85.
  • [16] Banerjee, S.C. (1985). Spontaneous combustion of coal and mine fires. A.A. Balkema / Rotterdam, 167 s.
  • [17] Kural, O. (1988). Kömür kimyası ve teknolojisi.
  • [18] Erkan, H. (1964). Kömürün depolanması. Madencilik, 3, 12-13.
  • [19] Karpuz, C., Güyagüler, T., Bağcı, S., Bozdağ, T., Başarır, H. ve Keskin, S. (2000). Linyitlerin kendiliğinden yanmaya yatkınlık derecelerinin tespiti: Bölüm I – Risk sınıflaması derlemesi. Madencilik Dergisi, 3-13.
  • [20] Kural, O. (1998).Kömür özellikleri, teknolojisi ve çevre ilişkileri. Özgün Ofset Matbaacılık A.Ş.
  • [21] Wang, D.; Dou, G.; Zhong, X.; Xin, H.; Qin, B. (2014). An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel, 117, 218-223.
  • [22] Li, J., Li, Z., Yang, Y., Zhang, X., Yan, D. and Liu, L. (2017). Inhibitive Effects of Antioxidants on Coal Spontaneous Combustion. Energy Fuels, 31(12), 14180-14190.
  • [23] Saraç, S. (1992). Yeraltı Kömür Ocaklarında Kendiliğinden Yanma. Anadolu Üniversitesi Mühendislik – Mimarlık Fakültesi Yayınları, 106-118.
  • [24] Soytürk, T. (1992). Tunçbilek Kömürlerinin Kendiliğinden Yanmaya Yatkınlıklarının Araştırılması. Yüksek Lisans tezi Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 77.
  • [25] Şahin, N., Didari, V. (2002). Zonguldak Kömürlerinde Kendiliğinden Yanmanın Erken Saptanması Amacıyla Yanma Ürünü Gazların İncelenmesi. Madencilik, 41, (4) 37– 51.
  • [26] Ayvazoğlu, E., 1978; EKİ Kozlu bölgesi Çay ve Acılık Kömürlerinin Oksidasyonunun Erken Tespiti Yönünden İncelenmesi. Türkiye 1. Kömür Kongresi, 539 – 563.
  • [27] Karaçam, E., Didari, V., Atalay, T. (1988). Zonguldak Kömürlerinin Kendiliğinden Yanmaya Yatkınlıklarının Araştırılması. Türkiye 6. Kömür Kongresi, 91 – 100.
  • [28] Yılmaz, A.O., Atalay, T. (1990). TTK Armutçuk Müessesesinde Kendiliğinden Yanma Olayının Araştırılması. Türkiye 7. Kömür Kongresi, 399–410.
  • [29] Kaymakçı, E. (1998). Zonguldak Havzası Kömür Damarlarına Uygulanabilecek bir Kendiliğinden Yanmaya Doğal Yatkınlığı Değerlendirme Tekniğinin Geliştirilmesi. Doktora tezi Zonguldak Karaelmas Üniversitesi Fen Bilimleri Enstitüsü.
  • [30] Saraç, S., Soytürk, T. (1992). Tunçbilek Kömürlerinin Kendiliğinden Yanmaya Yatkınlıklarının araştırılması. Türkiye 8. Kömür Kongresi, 141–152.
  • [31] Kadioglu, Y., Varamaz, M. (2003). The Effect of Moisture Content and Air – Drying on Spontaneous Combustion Characteristics of Two Turkish Lignites. Fuel, (82) 1685-1693.
  • [32] Sensogut, C., Cinar, I. (2000). A Research on the Tendency of Ermenek District Coals to Spontaneous Combustion. Mineral Resources Engineering, 9(4), 421– 427.
  • [33] Beamish, B.B., Barakat, M.A., St.George, J.D. (2000. Adiabatic testing procedures for determining self-heating propensity of coal and sample ageing effects. Thermochimica Acta, 362, 79-87.
  • [34] Zubíček, V., Adamus, A. (2013). Susceptibility of coal to spontaneous combustion verified by modified adiabatic method under conditions of Ostrava-Karvina coalfield, Czech Republic. Fuel Processing Technology, 113, 63-66.
  • [35] Chen, X.D. (1999). On basket heating methods for obtaining exothermic reactivity of solid materials: The extent and impact of the departure of the crossing-point temperature from the oven temperature. Process Safety and Environmental Protection, 77(4), 187-192.
  • [36] Zubíček, V. (2008). Assessment of susceptibility of coal to spontaneous combustion in OKR. Geoscience Engineering, 4, 1-9.
  • [37] Avila, C., Wu, T., Lester, E. (2014). Estimating the spontaneous combustion potential of coals using thermogravimetric analysis. Energy&Fuels, 28, 1765-1773.
  • [38] Pis, J.J., de la Puente, G., Fuente, E., Moran, A., Rubiera, F. (1996). A study of the self-heating of fresh and oxidized coals by differantial thermal analysis. Thermochimica Acta, 279, 93-101.
  • [39] Oren, O., Sensogut, C. (2010). Spontaneous combustion liability of Kutahya (Turkey) regionlignites. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 32, 877-885.
  • [40] Feng, K.K., Chakravorty, R.N. and Cochrane, T.S. (1973). Spontaneous combustion – a coal mining hazard. The Canadian Mining and Metall. Journal, 66(738), 75–84.
  • [41] Beamish, B. B., Blazak, D.G. (2005). Relationship Between Ash Content and R70 Self-heating Rate of Callide Coal. International Journal of Coal Geology, 64, 126-132.

INVESTIGATION OF SOMA REGION COALS WITH RESPECT TO SPONTANEOUS COMBUSTION SUSCEPTIBILITY

Year 2020, Issue: 045, 201 - 214, 31.12.2020

Abstract

One of the factors that make coal mining difficult is the spontaneous combustion of coal. Spontaneous combustion including various parameters is not only met in underground mining, but also in surface mining, stockyards and long-distance transport of coal by land and sea. This event, which threatened the occupational safety in mines, has effects of causing loss of lives and defecting human health. In mining enterprises, it causes production losses along with economic losses. It is a serious matter that requires good planning and supervision in order not to cause irreversible damages. Spontaneous combustion of coals develops depending on internal, environmental factors and production methods. In order to eliminate the problems caused by spontaneous combustion, the spontaneous combustion conditions of coals must be determined and classified beforehand. In this study, spontaneous combustion tendencies of Soma Region coals were generally determined with samples taken from Işıklar Colliery, İmbat Mining and Eynez Colliery of Demir Export. Using the crossing point method, a total of 30 experiments were carried out with 10 samples taken from each colliery to find out the risk of spontaneous combustion of the Soma Region coals. Based on the values obtained, it has been determined that the coals of the Soma Region have a "high" tendency to spontaneous combustion.

References

  • [1] Carras, J. N., Day, S. J., Saghafi, A. and Williams, D. J. (2009). Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int. J. of Coal Geology, 78(2), 161–168.
  • [2] Fierro, V., Miranda, J. L., Romero, C., Andrés, J. M., Arriaga, a., Schmal, D. and Visser, G. H. (1999). Prevention of spontaneous combustion in coal stockpiles: Experimental results in coal storage yard. Fuel Processing Technology, 59(1), 23–24.
  • [3] Qi, X., Wang, D., Zhong, X., Gu, J. and Xu, T. (2010). Characteristics of oxygen consumption of coal at programmed temperatures. Mining Science and Technology (China), 20(3), 372–377.
  • [4] Carras, J. N., Young, B. C. (1994). Self-heating of coal and related materials: Models, application and test methods. Progress in Energy and Combustion Science, 20(1), 1–15.
  • [5] Gürdal, G., Hoşgörmez, H., Özcan, D., Li, X., Liu, H. and Song, W. (2015). The properties of Çan Basin coals (Çanakkale—Turkey): Spontaneous combustion and combustion by-products. Int. J. of Coal Geology, 138, 1–15.
  • [6] Wang, H., Dlugogorski, B. Z. and Kennedy, E. M. (2003). Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 29(6), 487–513.
  • [7] Güney, M., (1968). Certain factors affecting the oxidation and spontaneous combustion of coal. University of Nottingham, Mining Dept. Magazine, 20, 71 – 80.
  • [8] Ramlu, M.A., (1991). Mine disastersand mine rescue. A.A. Balkema, Rotterdam, p.397
  • [9] Wang, H., Dlugogorski, B. Z. and Kennedy, E. M. (2003). Analysis of the mechanism of the low-temperature oxidation of coal. Combustion and Flame, 134(1–2), 107–117.
  • [10] Akgün, F., Arisoy, A. (1994). Effect of particle size on the spontaneous heating of a coal stockpile. Combustion and Flame, 99(1), 137–146.
  • [11] Didari, V. (1986). Yeraltı ocaklarında kömürün kendiliğinden yanması ve risk indeksleri. Madencilik Dergisi, 25(4), 29-34.
  • [12] Arisoy, A., Beamish, B. (2015). Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation. Fuel, 139, 107-114.
  • [13] Beamish, B., Lin, Z. and Beamish, R. (2012). Investigating the influence of reactive pyrite on coal self-heating. Proc. of the Twelfth Coal Operators Conference (pp.294-299), Wollongong, Australia.
  • [14] Stracher, G.B.,Prakash, A. and Ellina, V.S. (2010). Coal and peat fires – A global perspective. vol.I: coal, geology and combustion, p.343
  • [15] Gill, F., Browning, E. (1971). Spontaneous combustion in coal mines. Colliery Guardian, 219, 79-85.
  • [16] Banerjee, S.C. (1985). Spontaneous combustion of coal and mine fires. A.A. Balkema / Rotterdam, 167 s.
  • [17] Kural, O. (1988). Kömür kimyası ve teknolojisi.
  • [18] Erkan, H. (1964). Kömürün depolanması. Madencilik, 3, 12-13.
  • [19] Karpuz, C., Güyagüler, T., Bağcı, S., Bozdağ, T., Başarır, H. ve Keskin, S. (2000). Linyitlerin kendiliğinden yanmaya yatkınlık derecelerinin tespiti: Bölüm I – Risk sınıflaması derlemesi. Madencilik Dergisi, 3-13.
  • [20] Kural, O. (1998).Kömür özellikleri, teknolojisi ve çevre ilişkileri. Özgün Ofset Matbaacılık A.Ş.
  • [21] Wang, D.; Dou, G.; Zhong, X.; Xin, H.; Qin, B. (2014). An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel, 117, 218-223.
  • [22] Li, J., Li, Z., Yang, Y., Zhang, X., Yan, D. and Liu, L. (2017). Inhibitive Effects of Antioxidants on Coal Spontaneous Combustion. Energy Fuels, 31(12), 14180-14190.
  • [23] Saraç, S. (1992). Yeraltı Kömür Ocaklarında Kendiliğinden Yanma. Anadolu Üniversitesi Mühendislik – Mimarlık Fakültesi Yayınları, 106-118.
  • [24] Soytürk, T. (1992). Tunçbilek Kömürlerinin Kendiliğinden Yanmaya Yatkınlıklarının Araştırılması. Yüksek Lisans tezi Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 77.
  • [25] Şahin, N., Didari, V. (2002). Zonguldak Kömürlerinde Kendiliğinden Yanmanın Erken Saptanması Amacıyla Yanma Ürünü Gazların İncelenmesi. Madencilik, 41, (4) 37– 51.
  • [26] Ayvazoğlu, E., 1978; EKİ Kozlu bölgesi Çay ve Acılık Kömürlerinin Oksidasyonunun Erken Tespiti Yönünden İncelenmesi. Türkiye 1. Kömür Kongresi, 539 – 563.
  • [27] Karaçam, E., Didari, V., Atalay, T. (1988). Zonguldak Kömürlerinin Kendiliğinden Yanmaya Yatkınlıklarının Araştırılması. Türkiye 6. Kömür Kongresi, 91 – 100.
  • [28] Yılmaz, A.O., Atalay, T. (1990). TTK Armutçuk Müessesesinde Kendiliğinden Yanma Olayının Araştırılması. Türkiye 7. Kömür Kongresi, 399–410.
  • [29] Kaymakçı, E. (1998). Zonguldak Havzası Kömür Damarlarına Uygulanabilecek bir Kendiliğinden Yanmaya Doğal Yatkınlığı Değerlendirme Tekniğinin Geliştirilmesi. Doktora tezi Zonguldak Karaelmas Üniversitesi Fen Bilimleri Enstitüsü.
  • [30] Saraç, S., Soytürk, T. (1992). Tunçbilek Kömürlerinin Kendiliğinden Yanmaya Yatkınlıklarının araştırılması. Türkiye 8. Kömür Kongresi, 141–152.
  • [31] Kadioglu, Y., Varamaz, M. (2003). The Effect of Moisture Content and Air – Drying on Spontaneous Combustion Characteristics of Two Turkish Lignites. Fuel, (82) 1685-1693.
  • [32] Sensogut, C., Cinar, I. (2000). A Research on the Tendency of Ermenek District Coals to Spontaneous Combustion. Mineral Resources Engineering, 9(4), 421– 427.
  • [33] Beamish, B.B., Barakat, M.A., St.George, J.D. (2000. Adiabatic testing procedures for determining self-heating propensity of coal and sample ageing effects. Thermochimica Acta, 362, 79-87.
  • [34] Zubíček, V., Adamus, A. (2013). Susceptibility of coal to spontaneous combustion verified by modified adiabatic method under conditions of Ostrava-Karvina coalfield, Czech Republic. Fuel Processing Technology, 113, 63-66.
  • [35] Chen, X.D. (1999). On basket heating methods for obtaining exothermic reactivity of solid materials: The extent and impact of the departure of the crossing-point temperature from the oven temperature. Process Safety and Environmental Protection, 77(4), 187-192.
  • [36] Zubíček, V. (2008). Assessment of susceptibility of coal to spontaneous combustion in OKR. Geoscience Engineering, 4, 1-9.
  • [37] Avila, C., Wu, T., Lester, E. (2014). Estimating the spontaneous combustion potential of coals using thermogravimetric analysis. Energy&Fuels, 28, 1765-1773.
  • [38] Pis, J.J., de la Puente, G., Fuente, E., Moran, A., Rubiera, F. (1996). A study of the self-heating of fresh and oxidized coals by differantial thermal analysis. Thermochimica Acta, 279, 93-101.
  • [39] Oren, O., Sensogut, C. (2010). Spontaneous combustion liability of Kutahya (Turkey) regionlignites. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 32, 877-885.
  • [40] Feng, K.K., Chakravorty, R.N. and Cochrane, T.S. (1973). Spontaneous combustion – a coal mining hazard. The Canadian Mining and Metall. Journal, 66(738), 75–84.
  • [41] Beamish, B. B., Blazak, D.G. (2005). Relationship Between Ash Content and R70 Self-heating Rate of Callide Coal. International Journal of Coal Geology, 64, 126-132.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hasan Hüseyin Ilıca This is me 0000-0001-9975-2699

Özer Ören This is me 0000-0002-4629-1718

Cem Şensöğüt This is me 0000-0001-9192-8813

Publication Date December 31, 2020
Submission Date August 8, 2020
Published in Issue Year 2020 Issue: 045

Cite

IEEE H. H. Ilıca, Ö. Ören, and C. Şensöğüt, “INVESTIGATION OF SOMA REGION COALS WITH RESPECT TO SPONTANEOUS COMBUSTION SUSCEPTIBILITY”, JSR-A, no. 045, pp. 201–214, December 2020.