Research Article
BibTex RIS Cite

PROPERTIES of POROUS CERAMICS PRODUCED by SINTERING TERRA ROSSA-ALKALI MIXES

Year 2022, Issue: 049, 130 - 138, 30.06.2022

Abstract

Porous ceramics were produced by sintering terra rossa (TR) with alkalis for void formation at 1000 °C. Little cylinders (25x25 mm) were prepared with TR to investigate the influence of alkali type (NaOH, Na2CO3 and KOH) and amount (8, 10 and 12% by weight of TR) on the physical, mechanical and microstructure of porous ceramics (PC). The highest compressive strength (32 MPa) was obtained in series with no alkalis. The addition of alkalis decreased the unit weight and compressive strength of PC due to decreased sintering temperature, increased foaming and excessive formation of glassy phase causing the brittle structure. The unit weight of the PC produced with NaOH and Na2CO3 was considerably low (0.62-0.70 g/cm3) compared with PC comprising KOH (1.05-2.16 g/cm3). Corresponding compressive strengths were 3.17-4.46 MPa and 7.68-25.87 MPa revealing that it can be used as a decorative alternative to clay brick and autoclaved aerated concrete blocks.

Supporting Institution

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Thanks

The authors, gratefully, acknowledge Tulu Ceramics for sintering in an industrial furnace and the Center for Advanced Technologies (Kütahya Dumlupinar University) for their help in some measurements and analysis. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • [1] Torrent, J., (2005), Mediterranean soils. In: Hillel, D. (Ed.), Encyclopaedia of soils in the environment, Elsevier Academic Press, Oxford, 2, 418-427.
  • [2] Merino, E., Banerjee, A. and Dworkin, S., (2006), Dust, terra Rossa, replacement, and karst: serendipitous geodynamics in the critical zone, Geochimica et Cosmochimica Acta, 70-18.
  • [3] Vingiani, S., Di Iorio, E., Colombo, C. and Terribile, F., (2018), Integrated study of red Mediterranean soils from southern Italy, Catena.
  • [4] Durn, G., Ottner, F., Slovenac, D., (1999), Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia, Geoderma, 91, 125-150.
  • [5] Mater, B., (2012), Morphological properties and formations of some fossil terra Rossa in eastern Anatolia, Geography Journal, 3, 1988-1992.
  • [6] Stipičević, S., Sekovanić, L., Drevenkar, V., (2014), Ability of natural, acid-activated and surfactant-modified terra Rossa, Applied Clay Science, 88-89, 56-62.
  • [7] Capitâneo, J.L., Da Silva, F.T., Vieira, C.M.F. and Monteiro, S.N., (2005), Reformulation of the kaolinitic body for extruded floor tiles with phonolite addition, Silicates Industriels. 70, 161-165.
  • [8] Elimbi, A., M. Dika, J., Chantale, N., (2014), Djangang effects of alkaline additives on the thermal behaviour and properties of Cameroonian poorly fluxing clay ceramics, Journal of Minerals and Materials Characterization and Engineering, 2, 484-501.
  • [9] Kang, J., Wang, J., Zhou, X., Yuan, J., Hou, Y., Qian, S., Li, S., Yue, Y., (2018), Effects of alkali metal oxides on crystallization behaviour and acid corrosion resistance of cordierite based glass-ceramics, J. Non-Cryst. Solids 481, 184-190.
  • [10] Ge, X., Zhou, M., Wang, H., Chen, L., Li, X., & Chen, X., (2019), Effects of flux components on the properties and pore structure of ceramic foams produced from coal bottom ash, Ceramics International, 45-9, 12528-12534.
  • [11] Mohd H., Khamirul A., Sidek Hj. Ab Aziz, Zaidan A.W., Siti Syuhaida A. R., (2017), Effect of sintering on crystallization and structural properties of soda-lime-silica glass, Science of Sintering, 49, 409-417.
  • [12] Wang, M. J. Cheng, M. Li, F. He and W. Deng, (2012), Viscosity and thermal expansion of soda-lime-silica glass doped with Gd2O3 and Y2O3, Solid State Sci., 14.
  • [13] Bagley, B. G., Vogel, E. M., French, W. G., Pasteur, G. A., Gan J. N. and Tauc, J. (1976), The optical properties of a soda-lime-silica glass in the region from 0.006 to 22 eV, Non-Cryst. Solids, 22.
  • [14] Wang, M., Cheng J., Li, M., (2010), Effect of rare earth on viscosity and thermal expansion of soda-lime-silicate glass, J. Rare Earth, 28.
  • [15] Mastelaro, V.R., Zanotto, E. D., (1996), Residual stresses in a soda-lime–silica glass-ceramic, J. of Non-Cryst. Solids, 194, 297-304.
  • [16] Kingery, W.D., Bowen, H.K. and Uhlmann, D.R. (1995) Introduction to ceramics. John Wiley and Sons, New York.
  • [17] Xuexiang, G., Zhou M., Wang H., Chen L., Li X., Chena, X., (2019), Effects of flux components on the properties and pore structure of ceramic foams produced from coal bottom ash. Ceramics International, 45,12528-12534.
  • [18] Singh, N., M. M, S. Arya, (2018), Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: a review, Resour. Conserv. Recycle., 138, 257-271.
  • [19] Çolak, M., Özkan, I., (2011), Sintering properties of the Bornova shale (Turkey) and its application in the production of red fired ceramics. Industrial Ceramics, 31-3.
  • [20] Bories, C., Borredon, M.-E., Vedrenne, E., & Vilarem, G., (2014), Development of eco-friendly porous fired clay bricks using pore-forming agents: A review, Journal of Environmental Management, 143, 186-196.
  • [21] Daniel Martínez, J, Betancourt-Parra, S., Carvajal-Marín, I., Betancur-Vélez, M., (2018), Ceramic light-weight aggregates production from petrochemical wastes and carbonates (NaHCO3 and CaCO3) as expansion agents, Construction and Building Materials. 180, 124-133.
  • [22] Mercan, C., (2020), Alkaliler, uçucu kül ve sinterlemenin hafif agrega üretimine etkisi, Yüksek Lisans Tezi, Kütahya Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kütahya.
  • [23] EN 1097-6, (2015), Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption, Comite European de Normalisation.
  • [24] Vigneron, T.Q.G., Vieira, C.M.F., Delaqua, G.C.G., Vernilli Júnior, F., Cristante Neto, Â., (2019), Incorporation of mould flux waste in red ceramic, Journal of Materials Research and Technology, 8, 5707-5715.
  • [25] De’ Gennaro, R., Cappelletti, P., Cerri, G., de’ Gennaro, M., Dondi, M., Guarini, G., Naimo, D., (2003), Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles. Journal of the European Ceramic Society, 23 (13), 2237-2245.
  • [26] Duvarcı, Ö.Ç., Akdeniz, Y., Özmıhçı, F., Ülkü, S., Balköse, D., Çiftçioğlu, M., (2007), Thermal behaviour of a zeolitic tuff, Ceramics International, 33-5 795-801.
  • [27] TS EN 771-1, (2005), Specification for masonry units-Part 1: Clay masonry units, Comite European de Normalisation.
  • [28] TS EN 771-4, (2015), Specification for masonry units - Part 4: Autoclaved aerated concrete masonry units, Comite European de Normalisation.
Year 2022, Issue: 049, 130 - 138, 30.06.2022

Abstract

References

  • [1] Torrent, J., (2005), Mediterranean soils. In: Hillel, D. (Ed.), Encyclopaedia of soils in the environment, Elsevier Academic Press, Oxford, 2, 418-427.
  • [2] Merino, E., Banerjee, A. and Dworkin, S., (2006), Dust, terra Rossa, replacement, and karst: serendipitous geodynamics in the critical zone, Geochimica et Cosmochimica Acta, 70-18.
  • [3] Vingiani, S., Di Iorio, E., Colombo, C. and Terribile, F., (2018), Integrated study of red Mediterranean soils from southern Italy, Catena.
  • [4] Durn, G., Ottner, F., Slovenac, D., (1999), Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia, Geoderma, 91, 125-150.
  • [5] Mater, B., (2012), Morphological properties and formations of some fossil terra Rossa in eastern Anatolia, Geography Journal, 3, 1988-1992.
  • [6] Stipičević, S., Sekovanić, L., Drevenkar, V., (2014), Ability of natural, acid-activated and surfactant-modified terra Rossa, Applied Clay Science, 88-89, 56-62.
  • [7] Capitâneo, J.L., Da Silva, F.T., Vieira, C.M.F. and Monteiro, S.N., (2005), Reformulation of the kaolinitic body for extruded floor tiles with phonolite addition, Silicates Industriels. 70, 161-165.
  • [8] Elimbi, A., M. Dika, J., Chantale, N., (2014), Djangang effects of alkaline additives on the thermal behaviour and properties of Cameroonian poorly fluxing clay ceramics, Journal of Minerals and Materials Characterization and Engineering, 2, 484-501.
  • [9] Kang, J., Wang, J., Zhou, X., Yuan, J., Hou, Y., Qian, S., Li, S., Yue, Y., (2018), Effects of alkali metal oxides on crystallization behaviour and acid corrosion resistance of cordierite based glass-ceramics, J. Non-Cryst. Solids 481, 184-190.
  • [10] Ge, X., Zhou, M., Wang, H., Chen, L., Li, X., & Chen, X., (2019), Effects of flux components on the properties and pore structure of ceramic foams produced from coal bottom ash, Ceramics International, 45-9, 12528-12534.
  • [11] Mohd H., Khamirul A., Sidek Hj. Ab Aziz, Zaidan A.W., Siti Syuhaida A. R., (2017), Effect of sintering on crystallization and structural properties of soda-lime-silica glass, Science of Sintering, 49, 409-417.
  • [12] Wang, M. J. Cheng, M. Li, F. He and W. Deng, (2012), Viscosity and thermal expansion of soda-lime-silica glass doped with Gd2O3 and Y2O3, Solid State Sci., 14.
  • [13] Bagley, B. G., Vogel, E. M., French, W. G., Pasteur, G. A., Gan J. N. and Tauc, J. (1976), The optical properties of a soda-lime-silica glass in the region from 0.006 to 22 eV, Non-Cryst. Solids, 22.
  • [14] Wang, M., Cheng J., Li, M., (2010), Effect of rare earth on viscosity and thermal expansion of soda-lime-silicate glass, J. Rare Earth, 28.
  • [15] Mastelaro, V.R., Zanotto, E. D., (1996), Residual stresses in a soda-lime–silica glass-ceramic, J. of Non-Cryst. Solids, 194, 297-304.
  • [16] Kingery, W.D., Bowen, H.K. and Uhlmann, D.R. (1995) Introduction to ceramics. John Wiley and Sons, New York.
  • [17] Xuexiang, G., Zhou M., Wang H., Chen L., Li X., Chena, X., (2019), Effects of flux components on the properties and pore structure of ceramic foams produced from coal bottom ash. Ceramics International, 45,12528-12534.
  • [18] Singh, N., M. M, S. Arya, (2018), Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: a review, Resour. Conserv. Recycle., 138, 257-271.
  • [19] Çolak, M., Özkan, I., (2011), Sintering properties of the Bornova shale (Turkey) and its application in the production of red fired ceramics. Industrial Ceramics, 31-3.
  • [20] Bories, C., Borredon, M.-E., Vedrenne, E., & Vilarem, G., (2014), Development of eco-friendly porous fired clay bricks using pore-forming agents: A review, Journal of Environmental Management, 143, 186-196.
  • [21] Daniel Martínez, J, Betancourt-Parra, S., Carvajal-Marín, I., Betancur-Vélez, M., (2018), Ceramic light-weight aggregates production from petrochemical wastes and carbonates (NaHCO3 and CaCO3) as expansion agents, Construction and Building Materials. 180, 124-133.
  • [22] Mercan, C., (2020), Alkaliler, uçucu kül ve sinterlemenin hafif agrega üretimine etkisi, Yüksek Lisans Tezi, Kütahya Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kütahya.
  • [23] EN 1097-6, (2015), Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption, Comite European de Normalisation.
  • [24] Vigneron, T.Q.G., Vieira, C.M.F., Delaqua, G.C.G., Vernilli Júnior, F., Cristante Neto, Â., (2019), Incorporation of mould flux waste in red ceramic, Journal of Materials Research and Technology, 8, 5707-5715.
  • [25] De’ Gennaro, R., Cappelletti, P., Cerri, G., de’ Gennaro, M., Dondi, M., Guarini, G., Naimo, D., (2003), Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles. Journal of the European Ceramic Society, 23 (13), 2237-2245.
  • [26] Duvarcı, Ö.Ç., Akdeniz, Y., Özmıhçı, F., Ülkü, S., Balköse, D., Çiftçioğlu, M., (2007), Thermal behaviour of a zeolitic tuff, Ceramics International, 33-5 795-801.
  • [27] TS EN 771-1, (2005), Specification for masonry units-Part 1: Clay masonry units, Comite European de Normalisation.
  • [28] TS EN 771-4, (2015), Specification for masonry units - Part 4: Autoclaved aerated concrete masonry units, Comite European de Normalisation.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Canan Mercan 0000-0002-8366-3576

Mehmet Uğur Toprak 0000-0001-5483-2871

Eda Taşçı 0000-0003-3346-8833

Musa Akman 0000-0002-8677-9435

Publication Date June 30, 2022
Submission Date April 25, 2022
Published in Issue Year 2022 Issue: 049

Cite

IEEE C. Mercan, M. U. Toprak, E. Taşçı, and M. Akman, “PROPERTIES of POROUS CERAMICS PRODUCED by SINTERING TERRA ROSSA-ALKALI MIXES”, JSR-A, no. 049, pp. 130–138, June 2022.