Research Article
BibTex RIS Cite
Year 2022, Issue: 050, 217 - 227, 30.09.2022

Abstract

References

  • [1] Baltz, V., Manchon, A., Tsoi, M., Moriyama, T., Ono, T. and Tserkovnyak, Y., (2018), Antiferromagnetic spintronics, Reviews of Modern Physics, 90, (1), 015005.
  • [2] Železný, J., Wadley, P., Olejník, K., Hoffmann, A. and Ohno, H., (2018), Spin transport and spin torque in antiferromagnetic devices, Nature Physics, 14, (3), 220-228.
  • [3] Meiklejohn, W. H. and Bean, C. P., (1956), New Magnetic Anisotropy, Physical Review, 102, (5), 1413-1414.
  • [4] Demirci, E., Rojas, J. d., Quintana, A., Fina, I., Menéndez, E. and Sort, J., (2022), Voltage-driven strain-mediated modulation of exchange bias in Ir20Mn80/Fe80Ga20/Ta/⟨011⟩-oriented PMN-32PT heterostructures, Applied Physics Letters, 120, (14), 142406.
  • [5] Manchon, A., Železný, J., Miron, I. M., Jungwirth, T., Sinova, J., Thiaville, A., Garello, K. and Gambardella, P., (2019), Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Reviews of Modern Physics, 91, (3), 035004.
  • [6] Fang, B., San Jose, L. S. T., Chen, A. T., Li, Y., Zheng, D. X., Ma, Y. C., Algaidi, H., Liu, K., Finocchio, G. and Zhang, X. X., (2022), Electrical Manipulation of Exchange Bias in an Antiferromagnet/Ferromagnet-Based Device via Spin-Orbit Torque, Advanced Functional Materials, 32, (26).
  • [7] Lin, P.-H., Yang, B.-Y., Tsai, M.-H., Chen, P.-C., Huang, K.-F., Lin, H.-H. and Lai, C.-H., (2019), Manipulating exchange bias by spin–orbit torque, Nature Materials, 18, (4), 335-341.
  • [8] Zhang, J., Zhou, J., Luo, Z.-L., Chen, Y. B., Zhou, J., Lin, W., Lu, M.-H., Zhang, S.-T., Gao, C., Wu, D. and Chen, Y.-F., (2020), Exchange-biased nanocomposite ferromagnetic insulator, Physical Review B, 101, (1), 014422.
  • [9] Wu, R., Xue, M., Maity, T., Peng, Y., Giri, S. K., Tian, G., MacManus-Driscoll, J. L. and Yang, J., (2020), Influence of atomic roughness at the uncompensated Fe/CoO(111) interface on the exchange-bias effect, Physical Review B, 101, (1), 014425.
  • [10] Demirci, E., Öztürk, M., Pişkin, H. and Akdoğan, N., (2020), Angle-Dependent Inverted Hysteresis Loops in an Exchange-Biased [Co/Pt]5/IrMn Thin Film, Journal of Superconductivity and Novel Magnetism, 33, (3), 721-726.
  • [11] Dong, Y., Zhao, X., Wang, W., Chen, Y., Bai, L., Yan, S. and Tian, Y., (2022), Room temperature manipulation of exchange bias in magnetic heterojunctions, Journal of Magnetism and Magnetic Materials, 559.
  • [12] Wu, H., Sudoh, I., Xu, R., Si, W., Vaz, C. A. F., Kim, J.-y., Vallejo-Fernandez, G. and Hirohata, A., (2018), Large exchange bias induced by polycrystalline Mn3Ga antiferromagnetic films with controlled layer thickness, Journal of Physics D: Applied Physics, 51, (21), 215003.
  • [13] Wang, R., Xiao, Z., Liu, H., Quan, Z., Zhang, X., Wang, M., Wu, M. and Xu, X., (2019), Enhancement of perpendicular magnetic anisotropy and spin-orbit torque in Ta/Pt/Co/Ta multi-layered heterostructures through interfacial diffusion, Applied Physics Letters, 114, (4), 042404.
  • [14] Ryu, J., Avci, C. O., Karube, S., Kohda, M., Beach, G. S. D. and Nitta, J., (2019), Crystal orientation dependence of spin-orbit torques in Co/Pt bilayers, Applied Physics Letters, 114, (14), 142402.
  • [15] Zhu, L., Ralph, D. C. and Buhrman, R. A., (2019), Spin-Orbit Torques in Heavy-Metal--Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling, Physical Review Letters, 122, (7), 077201.
  • [16] Rowan-Robinson, R. M., Hindmarch, A. T. and Atkinson, D., (2018), Efficient current-induced magnetization reversal by spin-orbit torque in Pt/Co/Pt, Journal of Applied Physics, 124, (18), 183901.
  • [17] Jinnai, B., Zhang, C., Kurenkov, A., Bersweiler, M., Sato, H., Fukami, S. and Ohno, H., (2017), Spin-orbit torque induced magnetization switching in Co/Pt multilayers, Applied Physics Letters, 111, (10), 102402.
  • [18] Ramaswamy, R., Qiu, X., Dutta, T., Pollard, S. D. and Yang, H., (2016), Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures, Applied Physics Letters, 108, (20), 202406.
  • [19] Skowroński, W., Cecot, M., Kanak, J., Ziętek, S., Stobiecki, T., Yao, L., van Dijken, S., Nozaki, T., Yakushiji, K. and Yuasa, S., (2016), Temperature dependence of spin-orbit torques in W/CoFeB bilayers, Applied Physics Letters, 109, (6), 062407.
  • [20] Akyol, M., Alzate, J. G., Yu, G., Upadhyaya, P., Wong, K. L., Ekicibil, A., Amiri, P. K. and Wang, K. L., (2015), Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures, Applied Physics Letters, 106, (3), 032406.
  • [21] Engel, C., Goolaup, S., Luo, F. and Lew, W. S., (2017), Characterizing Angular Dependence of Spin-Orbit Torque Effective Fields in Pt/(Co/Ni)2/Co/IrMn Structure, Ieee Transactions on Magnetics, 53, (11), 1-4.
  • [22] Hayashi, M., Kim, J., Yamanouchi, M. and Ohno, H., (2014), Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements, Physical Review B, 89, (14), 144425.
  • [23] Cavicchia, D. R., D’Orazio, F., Rossi, L., Ricci, F. and Lucari, F., (2013), Influence of Cu seed layer on the magnetization reversal in exchange-biased FeMn/FeCo systems, EPJ Web of Conferences, 40, 13002.
  • [24] Dunz, M. and Meinert, M., (2020), Role of the Ta buffer layer in Ta/MnN/CoFeB stacks for maximizing exchange bias, Journal of Applied Physics, 128, (15), 153902.
  • [25] Ashida, T., Sato, Y., Nozaki, T. and Sahashi, M., (2013), Effect of the Pt buffer layer on perpendicular exchange bias based on collinear/non-collinear coupling in a Cr2O3/Co3Pt interface, Journal of Applied Physics, 113, (17), 17D711.
  • [26] Öksüzoğlu, R. M., Yıldırım, M., Çınar, H., Hildebrandt, E. and Alff, L., (2011), Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir20Mn80/Co90Fe10 exchange bias, Journal of Magnetism and Magnetic Materials, 323, (13), 1827-1834.
  • [27] Kohn, A., Kovács, A., Fan, R., McIntyre, G. J., Ward, R. C. C. and Goff, J. P., (2013), The antiferromagnetic structures of IrMn3 and their influence on exchange-bias, Sci Rep, 3, 2412.
  • [28] Nozières, J. P., Jaren, S., Zhang, Y. B., Zeltser, A., Pentek, K. and Speriosu, V. S., (2000), Blocking temperature distribution and long-term stability of spin-valve structures with Mn-based antiferromagnets, Journal of Applied Physics, 87, (8), 3920-3925.
  • [29] Demirci, E., (2016), "Manyetoelektrik Cr2O3 Tabanlı İnce Film Sistemlerinde Dik Exchange Bias Etkisinin İncelenmesi [Investigation of perpendicular exchange bias effect in magnetoelectric Cr2O3 based thin films]", PhD Thesis, Written in Turkish, Gebze Technical University, Turkey.
  • [30] Mokhtari, I. B.-E., Mourkas, A., Ntetsika, P., Panagiotopoulos, I., Roussigné, Y., Cherif, S. M., Stashkevich, A., Kail, F., Chahed, L. and Belmeguenai, M., (2019), Interfacial Dzyaloshinskii-Moriya interaction, interface-induced damping and perpendicular magnetic anisotropy in Pt/Co/W based multilayers, Journal of Applied Physics, 126, (13), 133902.
  • [31] Li, G., Leung, C. W., Shueh, C., Hsu, H.-F., Huang, H.-R., Lin, K.-W., Lai, P. T. and Pong, P. W. T., (2013), Exchange bias effects of NiFe/NiO bilayers through ion-beam bombardment on the NiO surface, Surface and Coatings Technology, 228, S437-S441.
  • [32] Knorr, T. G. and Hoffman, R. W., (1959), Dependence of Geometric Magnetic Anisotropy in Thin Iron Films, Physical Review, 113, (4), 1039-1046.
  • [33] Özdemir, M., Aktaş, B., Öner, Y., Sato, T. and Ando, T., (1997), Anomalous anisotropy of reentrant Ni77Mn23 film, J. Phys. Condens. Matter., 9, 6433–6445.
  • [34] Hu, J.-g., Jin, G., Hu, A. and Ma, Y.-q., (2004), Temperature dependence of exchange bias and coercivity in ferromagnetic/antiferromagnetic bilayers, The European Physical Journal B - Condensed Matter and Complex Systems, 40, (3), 265-271.
  • [35] Malozemoff, A. P., (1987), Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces, Phys Rev B Condens Matter, 35, (7), 3679-3682.

ROLE of Pt, Cu, Au and Cr UNDERLAYERS on EXCHANGE BIAS PROPERTIES in Pt/Py/IrMn THIN FILMS

Year 2022, Issue: 050, 217 - 227, 30.09.2022

Abstract

Herein, the structural and magnetic properties of polycrystalline UL-X/Pt/Py/IrMn thin films were studied to observe the role of an underlayer on the exchange bias properties. Thin films with Pt, Cu, Au or Cr underlayers (UL-X) were deposited at room temperature by magnetron sputtering. The structural properties of the samples were investigated to analyze the layer thicknesses, material densities, interface roughnesses, and crystal structures of the samples. Magnetic characterization measurements were performed to obtain the sign and the value of exchange bias properties in the samples. The differences in the sign and the value of exchange bias effect in the samples with different underlayers are mainly explained by discussing the effects of lattice parameters and growth conditions. On this basis, one would expect that these results will help in designing new spintronic devices.

Thanks

We are grateful to the Nanomagnetism and Spintronics Laboratory (NASAM) of Gebze Technical University for the sputtering facilities provided for the sample growth. Magnetic measurements were performed at the MOKE and PPMS laboratories of the Physics Department of Gebze Technical University. The authors thank the staff member Adem Şen for his support during the XRD analysis.

References

  • [1] Baltz, V., Manchon, A., Tsoi, M., Moriyama, T., Ono, T. and Tserkovnyak, Y., (2018), Antiferromagnetic spintronics, Reviews of Modern Physics, 90, (1), 015005.
  • [2] Železný, J., Wadley, P., Olejník, K., Hoffmann, A. and Ohno, H., (2018), Spin transport and spin torque in antiferromagnetic devices, Nature Physics, 14, (3), 220-228.
  • [3] Meiklejohn, W. H. and Bean, C. P., (1956), New Magnetic Anisotropy, Physical Review, 102, (5), 1413-1414.
  • [4] Demirci, E., Rojas, J. d., Quintana, A., Fina, I., Menéndez, E. and Sort, J., (2022), Voltage-driven strain-mediated modulation of exchange bias in Ir20Mn80/Fe80Ga20/Ta/⟨011⟩-oriented PMN-32PT heterostructures, Applied Physics Letters, 120, (14), 142406.
  • [5] Manchon, A., Železný, J., Miron, I. M., Jungwirth, T., Sinova, J., Thiaville, A., Garello, K. and Gambardella, P., (2019), Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Reviews of Modern Physics, 91, (3), 035004.
  • [6] Fang, B., San Jose, L. S. T., Chen, A. T., Li, Y., Zheng, D. X., Ma, Y. C., Algaidi, H., Liu, K., Finocchio, G. and Zhang, X. X., (2022), Electrical Manipulation of Exchange Bias in an Antiferromagnet/Ferromagnet-Based Device via Spin-Orbit Torque, Advanced Functional Materials, 32, (26).
  • [7] Lin, P.-H., Yang, B.-Y., Tsai, M.-H., Chen, P.-C., Huang, K.-F., Lin, H.-H. and Lai, C.-H., (2019), Manipulating exchange bias by spin–orbit torque, Nature Materials, 18, (4), 335-341.
  • [8] Zhang, J., Zhou, J., Luo, Z.-L., Chen, Y. B., Zhou, J., Lin, W., Lu, M.-H., Zhang, S.-T., Gao, C., Wu, D. and Chen, Y.-F., (2020), Exchange-biased nanocomposite ferromagnetic insulator, Physical Review B, 101, (1), 014422.
  • [9] Wu, R., Xue, M., Maity, T., Peng, Y., Giri, S. K., Tian, G., MacManus-Driscoll, J. L. and Yang, J., (2020), Influence of atomic roughness at the uncompensated Fe/CoO(111) interface on the exchange-bias effect, Physical Review B, 101, (1), 014425.
  • [10] Demirci, E., Öztürk, M., Pişkin, H. and Akdoğan, N., (2020), Angle-Dependent Inverted Hysteresis Loops in an Exchange-Biased [Co/Pt]5/IrMn Thin Film, Journal of Superconductivity and Novel Magnetism, 33, (3), 721-726.
  • [11] Dong, Y., Zhao, X., Wang, W., Chen, Y., Bai, L., Yan, S. and Tian, Y., (2022), Room temperature manipulation of exchange bias in magnetic heterojunctions, Journal of Magnetism and Magnetic Materials, 559.
  • [12] Wu, H., Sudoh, I., Xu, R., Si, W., Vaz, C. A. F., Kim, J.-y., Vallejo-Fernandez, G. and Hirohata, A., (2018), Large exchange bias induced by polycrystalline Mn3Ga antiferromagnetic films with controlled layer thickness, Journal of Physics D: Applied Physics, 51, (21), 215003.
  • [13] Wang, R., Xiao, Z., Liu, H., Quan, Z., Zhang, X., Wang, M., Wu, M. and Xu, X., (2019), Enhancement of perpendicular magnetic anisotropy and spin-orbit torque in Ta/Pt/Co/Ta multi-layered heterostructures through interfacial diffusion, Applied Physics Letters, 114, (4), 042404.
  • [14] Ryu, J., Avci, C. O., Karube, S., Kohda, M., Beach, G. S. D. and Nitta, J., (2019), Crystal orientation dependence of spin-orbit torques in Co/Pt bilayers, Applied Physics Letters, 114, (14), 142402.
  • [15] Zhu, L., Ralph, D. C. and Buhrman, R. A., (2019), Spin-Orbit Torques in Heavy-Metal--Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling, Physical Review Letters, 122, (7), 077201.
  • [16] Rowan-Robinson, R. M., Hindmarch, A. T. and Atkinson, D., (2018), Efficient current-induced magnetization reversal by spin-orbit torque in Pt/Co/Pt, Journal of Applied Physics, 124, (18), 183901.
  • [17] Jinnai, B., Zhang, C., Kurenkov, A., Bersweiler, M., Sato, H., Fukami, S. and Ohno, H., (2017), Spin-orbit torque induced magnetization switching in Co/Pt multilayers, Applied Physics Letters, 111, (10), 102402.
  • [18] Ramaswamy, R., Qiu, X., Dutta, T., Pollard, S. D. and Yang, H., (2016), Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures, Applied Physics Letters, 108, (20), 202406.
  • [19] Skowroński, W., Cecot, M., Kanak, J., Ziętek, S., Stobiecki, T., Yao, L., van Dijken, S., Nozaki, T., Yakushiji, K. and Yuasa, S., (2016), Temperature dependence of spin-orbit torques in W/CoFeB bilayers, Applied Physics Letters, 109, (6), 062407.
  • [20] Akyol, M., Alzate, J. G., Yu, G., Upadhyaya, P., Wong, K. L., Ekicibil, A., Amiri, P. K. and Wang, K. L., (2015), Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures, Applied Physics Letters, 106, (3), 032406.
  • [21] Engel, C., Goolaup, S., Luo, F. and Lew, W. S., (2017), Characterizing Angular Dependence of Spin-Orbit Torque Effective Fields in Pt/(Co/Ni)2/Co/IrMn Structure, Ieee Transactions on Magnetics, 53, (11), 1-4.
  • [22] Hayashi, M., Kim, J., Yamanouchi, M. and Ohno, H., (2014), Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements, Physical Review B, 89, (14), 144425.
  • [23] Cavicchia, D. R., D’Orazio, F., Rossi, L., Ricci, F. and Lucari, F., (2013), Influence of Cu seed layer on the magnetization reversal in exchange-biased FeMn/FeCo systems, EPJ Web of Conferences, 40, 13002.
  • [24] Dunz, M. and Meinert, M., (2020), Role of the Ta buffer layer in Ta/MnN/CoFeB stacks for maximizing exchange bias, Journal of Applied Physics, 128, (15), 153902.
  • [25] Ashida, T., Sato, Y., Nozaki, T. and Sahashi, M., (2013), Effect of the Pt buffer layer on perpendicular exchange bias based on collinear/non-collinear coupling in a Cr2O3/Co3Pt interface, Journal of Applied Physics, 113, (17), 17D711.
  • [26] Öksüzoğlu, R. M., Yıldırım, M., Çınar, H., Hildebrandt, E. and Alff, L., (2011), Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir20Mn80/Co90Fe10 exchange bias, Journal of Magnetism and Magnetic Materials, 323, (13), 1827-1834.
  • [27] Kohn, A., Kovács, A., Fan, R., McIntyre, G. J., Ward, R. C. C. and Goff, J. P., (2013), The antiferromagnetic structures of IrMn3 and their influence on exchange-bias, Sci Rep, 3, 2412.
  • [28] Nozières, J. P., Jaren, S., Zhang, Y. B., Zeltser, A., Pentek, K. and Speriosu, V. S., (2000), Blocking temperature distribution and long-term stability of spin-valve structures with Mn-based antiferromagnets, Journal of Applied Physics, 87, (8), 3920-3925.
  • [29] Demirci, E., (2016), "Manyetoelektrik Cr2O3 Tabanlı İnce Film Sistemlerinde Dik Exchange Bias Etkisinin İncelenmesi [Investigation of perpendicular exchange bias effect in magnetoelectric Cr2O3 based thin films]", PhD Thesis, Written in Turkish, Gebze Technical University, Turkey.
  • [30] Mokhtari, I. B.-E., Mourkas, A., Ntetsika, P., Panagiotopoulos, I., Roussigné, Y., Cherif, S. M., Stashkevich, A., Kail, F., Chahed, L. and Belmeguenai, M., (2019), Interfacial Dzyaloshinskii-Moriya interaction, interface-induced damping and perpendicular magnetic anisotropy in Pt/Co/W based multilayers, Journal of Applied Physics, 126, (13), 133902.
  • [31] Li, G., Leung, C. W., Shueh, C., Hsu, H.-F., Huang, H.-R., Lin, K.-W., Lai, P. T. and Pong, P. W. T., (2013), Exchange bias effects of NiFe/NiO bilayers through ion-beam bombardment on the NiO surface, Surface and Coatings Technology, 228, S437-S441.
  • [32] Knorr, T. G. and Hoffman, R. W., (1959), Dependence of Geometric Magnetic Anisotropy in Thin Iron Films, Physical Review, 113, (4), 1039-1046.
  • [33] Özdemir, M., Aktaş, B., Öner, Y., Sato, T. and Ando, T., (1997), Anomalous anisotropy of reentrant Ni77Mn23 film, J. Phys. Condens. Matter., 9, 6433–6445.
  • [34] Hu, J.-g., Jin, G., Hu, A. and Ma, Y.-q., (2004), Temperature dependence of exchange bias and coercivity in ferromagnetic/antiferromagnetic bilayers, The European Physical Journal B - Condensed Matter and Complex Systems, 40, (3), 265-271.
  • [35] Malozemoff, A. P., (1987), Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces, Phys Rev B Condens Matter, 35, (7), 3679-3682.
There are 35 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Mustafa Öztürk 0000-0002-4564-3435

Publication Date September 30, 2022
Submission Date July 19, 2022
Published in Issue Year 2022 Issue: 050

Cite

IEEE M. Öztürk, “ROLE of Pt, Cu, Au and Cr UNDERLAYERS on EXCHANGE BIAS PROPERTIES in Pt/Py/IrMn THIN FILMS”, JSR-A, no. 050, pp. 217–227, September 2022.