Research Article
BibTex RIS Cite

THEORETICAL ELECTRONIC PROPERTIES, ADMET PREDICTION, and MOLECULAR DOCKING STUDIES of SOME IMIDAZOLE DERIVATIVES

Year 2022, Issue: 051, 340 - 357, 31.12.2022

Abstract

Imidazole is a significant component of heterocyclic compounds and is employed in a wide range of practices. It is recognized that different imidazole-based constructions exhibit various biological activity features. Ten imidazole derivatives prepared from phenylglyoxal monohydrate and different guanylhydrazones were designed in our previous publication. This study was focused on the structural/electronic properties of these known imidazole derivatives. The molecular geometry of the compounds was calculated using Spartan 10 software and the structure was optimized using the DFT/B3LYP method with the 6-31G** basis set ground state. Also, in silico evaluation of imidazole derivatives was carried out using UCSF Chimera and AutoDock Vina software. The protein used in these calculations is the crystal structure of the 3SN6, beta2 adrenergic receptor-Gs protein complex, responsible for the hormonal regulation of adenylate cyclase.

Thanks

The author would like to thank for all referees for their valuable contributions and recommendations.

References

  • [1] Ghosh, N., Chatterjee, S., Biswal, D., Pramanik, N. R., Chakrabarti, S., and Sil, P. C. (2022). Oxidative stress imposed in vivo anticancer therapeutic efficacy of novel imidazole-based oxidovanadium (IV) complex in solid tumor. Life Sciences, 301, 120606.
  • [2] Shirvani, P., Fassihi, A., Saghaie, L., Van Belle, S., Debyser, Z., and Christ, F. (2020). Synthesis, anti-HIV-1 and antiproliferative evaluation of novel 4-nitroimidazole derivatives combined with 5-hydroxy-4-pyridinone moiety. Journal of Molecular Structure, 1202, 127344.
  • [3] Fan, Y. L., Jin, X. H., Huang, Z. P., Yu, H. F., Zeng, Z. G., Gao, T., and Feng, L. S. (2018). Recent advances of imidazole-containing derivatives as anti-tubercular agents. European Journal of Medicinal Chemistry, 150, 347-365.
  • [4] Zong, X., Cai, J., Chen, J., Wang, P., Zhou, G., Chen, B., Li, W., and Ji, M. (2015). Design and synthesis of imidazole N–H substituted amide prodrugs as inhibitors of hepatitis C virus replication. Bioorganic & Medicinal Chemistry Letters, 25(16), 3147-3150.
  • [5] Puratchikody, A., and Doble, M. (2007). Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4, 5-diphenyl-1H-imidazoles. Bioorganic & Medicinal Chemistry, 15(2), 1083-1090.
  • [6] Hu, Y., Shen, Y., Wu, X., Tu, X., and Wang, G. X. (2018). Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. European Journal of Medicinal Chemistry, 143, 958-969.
  • [7] Zhang, Y., Xu, J., Li, Y., Yao, H., and Wu, X. (2015). Design, synthesis and pharmacological evaluation of novel no‐releasing benzimidazole hybrids as potential antihypertensive candidate. Chemical Biology & Drug Design, 85(5), 541-548.
  • [8] Abdel-Wahab, B. F., Awad, G. E., and Badria, F. A. (2011). Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. European Journal of Medicinal Chemistry, 46(5), 1505-1511.
  • [9] Manjusha, P., Prasana, J. C., Muthu, S., and Rizwana, B. F. (2020). Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: An antiprotozoal agent. Computational Biology and Chemistry, 88, 107330.
  • [10] Prabhala, P., Savanur, H. M., Sutar, S. M., Naik, K. N., Mittal, M. K., and Kalkhambkar, R. G. (2021). In silico molecular docking and in vitro antimicrobial evaluation of some C5-substituted imidazole analogues. European Journal of Medicinal Chemistry Reports, 3, 100015.
  • [11] Mermer, A., Keles, T., and Sirin, Y. (2021). Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorganic Chemistry, 114, 105076.
  • [12] Altındağ, F. D., Sağlık, B. N., Çevik, U. A., Işıkdağ, İ., Özkay, Y., and Gençer, H. K. (2019). Novel imidazole derivatives as antifungal agents: Synthesis, biological evaluation, ADME prediction and molecular docking studies. Phosphorus, Sulfur, and Silicon and the Related Elements.
  • [13] Lohitha, N., and Vijayakumar, V. (2021). Imidazole Appended Novel Phenoxyquinolines as New Inhibitors of α-Amylase and α-Glucosidase Evidenced with Molecular Docking Studies. Polycyclic Aromatic Compounds, 1-13.
  • [14] Ali, I., Nadeem Lone, M., A Al-Othman, Z., Al-Warthan, A., and Marsin Sanagi, M. (2015). Heterocyclic scaffolds: centrality in anticancer drug development. Current Drug Targets, 16(7), 711-734.
  • [15] Groessl, M., Reisner, E., Hartinger, C. G., Eichinger, R., Semenova, O., Timerbaev, A. R., Jakupec, M. A., Arion, V. B., and Keppler, B. K. (2007). Structure− activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L (S-dmso) ruthenate (III)](L= imidazole, indazole, 1, 2, 4-triazole, 4-amino-1, 2, 4-triazole, and 1-methyl-1, 2, 4-triazole): Aquation, redox properties, protein binding, and antiproliferative activity. Journal of Medicinal Chemistry, 50(9), 2185-2193.
  • [16] Ali, I., Lone, M. N., and Aboul-Enein, H. Y. (2017). Imidazoles as potential anticancer agents. MedChemComm, 8(9), 1742-1773.
  • [17] Al-Blewi, F., Shaikh, S. A., Naqvi, A., Aljohani, F., Aouad, M. R., Ihmaid, S., and Rezki, N. (2021). Design and synthesis of novel imidazole derivatives possessing triazole pharmacophore with potent anticancer activity, and in silico ADMET with GSK-3β molecular docking investigations. International Journal of Molecular Sciences, 22(3), 1162.
  • [18] Yadav, S. B., Sonvane, S. S., and Sekar, N. (2020). Novel blue-green emitting NLOphoric triphenylamine-imidazole based donor-π-acceptor compound: Solvatochromism, DFT, TD-DFT and non-linear optical studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117421. [19] Dinda, J., Ray, U., Mostafa, G., Lu, T. H., Usman, A., Razak, I. A., Chantrapromma, S., Fun, H. K., and Sinha, C. (2003). Copper (I)–azoimidazoles: a comparative account on the structure and electronic properties of copper (I) complexes of 1-methyl-2-(phenylazo) imidazole and 1-alkyl-2-(naphthyl-(α/β)-azo) imidazoles. Polyhedron, 22(2), 247-255.
  • [20] Wang, Y., Shen, S. Q., Zhou, J. H., Wang, T., Wang, S. N., and Liu, G. X. (2013). Synthesis, structural diversities and properties of a series of transition metal-organic frameworks based on asymmetric dicarboxylic acid and N-donor auxiliary ligand. Inorganic Chemistry Communications, 30, 5-12.
  • [21] Yavuz, S. Ç., Akkoc, S., and Sarıpınar, E. (2019). The cytotoxic activities of imidazole derivatives prepared from various guanylhydrazone and phenylglyoxal monohydrate. Synthetic Communications, 49(22), 3198-3209.
  • [22] Spartan'10, version 1.1.0. Wavefunction, Inc. Irvine, CA. 2010.
  • [23] Khodja, I. A., Boulebd, H., Bensouici, C., and Belfaitah, A. (2020). Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz) imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. Journal of Molecular Structure, 1218, 128527.
  • [24] D.S.J.S.D. Biovia, CA, USA, Discovery Studio Visualizer, (2017) 936.
  • [25] Padmaja, L., Ravikumar, C., Sajan, D., Hubert Joe, I., Jayakumar, V. S., Pettit, G. R., and Faurskov Nielsen, O. (2009). Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(4), 419-428.
  • [26] Bilkan, Ç. Determination of structural properties of some important polymers used as interfacial layer in fabrication of schottky barrier diodes (SBDs). Journal of the Institute of Science and Technology, 10(1), 225-233.
  • [27] Wojciechowski, A., Raposo, M. M. M., Castro, M. C. R., Kuznik, W., Fuks-Janczarek, I., Pokladko-Kowar, M., and Bureš, F. (2014). Nonlinear optoelectronic materials formed by push–pull (bi) thiophene derivatives functionalized with di (tri) cyanovinyl acceptor groups. Journal of Materials Science: Materials in Electronics, 25(4), 1745-1750.
  • [28] Ioakimidis, L., Thoukydidis, L., Mirza, A., Naeem, S., & Reynisson, J. (2008). Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR & Combinatorial Science, 27(4), 445-456.
  • [29] Soriano-Ursúa, M. A., Trujillo-Ferrara, J. G., Álvarez-Cedillo, J., & Correa-Basurto, J. (2010). Docking studies on a refined human β2 adrenoceptor model yield theoretical affinity values in function with experimental values for R-ligands, but not for S-antagonists. Journal of Molecular Modeling, 16(3), 401-409.
Year 2022, Issue: 051, 340 - 357, 31.12.2022

Abstract

References

  • [1] Ghosh, N., Chatterjee, S., Biswal, D., Pramanik, N. R., Chakrabarti, S., and Sil, P. C. (2022). Oxidative stress imposed in vivo anticancer therapeutic efficacy of novel imidazole-based oxidovanadium (IV) complex in solid tumor. Life Sciences, 301, 120606.
  • [2] Shirvani, P., Fassihi, A., Saghaie, L., Van Belle, S., Debyser, Z., and Christ, F. (2020). Synthesis, anti-HIV-1 and antiproliferative evaluation of novel 4-nitroimidazole derivatives combined with 5-hydroxy-4-pyridinone moiety. Journal of Molecular Structure, 1202, 127344.
  • [3] Fan, Y. L., Jin, X. H., Huang, Z. P., Yu, H. F., Zeng, Z. G., Gao, T., and Feng, L. S. (2018). Recent advances of imidazole-containing derivatives as anti-tubercular agents. European Journal of Medicinal Chemistry, 150, 347-365.
  • [4] Zong, X., Cai, J., Chen, J., Wang, P., Zhou, G., Chen, B., Li, W., and Ji, M. (2015). Design and synthesis of imidazole N–H substituted amide prodrugs as inhibitors of hepatitis C virus replication. Bioorganic & Medicinal Chemistry Letters, 25(16), 3147-3150.
  • [5] Puratchikody, A., and Doble, M. (2007). Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4, 5-diphenyl-1H-imidazoles. Bioorganic & Medicinal Chemistry, 15(2), 1083-1090.
  • [6] Hu, Y., Shen, Y., Wu, X., Tu, X., and Wang, G. X. (2018). Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. European Journal of Medicinal Chemistry, 143, 958-969.
  • [7] Zhang, Y., Xu, J., Li, Y., Yao, H., and Wu, X. (2015). Design, synthesis and pharmacological evaluation of novel no‐releasing benzimidazole hybrids as potential antihypertensive candidate. Chemical Biology & Drug Design, 85(5), 541-548.
  • [8] Abdel-Wahab, B. F., Awad, G. E., and Badria, F. A. (2011). Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. European Journal of Medicinal Chemistry, 46(5), 1505-1511.
  • [9] Manjusha, P., Prasana, J. C., Muthu, S., and Rizwana, B. F. (2020). Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: An antiprotozoal agent. Computational Biology and Chemistry, 88, 107330.
  • [10] Prabhala, P., Savanur, H. M., Sutar, S. M., Naik, K. N., Mittal, M. K., and Kalkhambkar, R. G. (2021). In silico molecular docking and in vitro antimicrobial evaluation of some C5-substituted imidazole analogues. European Journal of Medicinal Chemistry Reports, 3, 100015.
  • [11] Mermer, A., Keles, T., and Sirin, Y. (2021). Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorganic Chemistry, 114, 105076.
  • [12] Altındağ, F. D., Sağlık, B. N., Çevik, U. A., Işıkdağ, İ., Özkay, Y., and Gençer, H. K. (2019). Novel imidazole derivatives as antifungal agents: Synthesis, biological evaluation, ADME prediction and molecular docking studies. Phosphorus, Sulfur, and Silicon and the Related Elements.
  • [13] Lohitha, N., and Vijayakumar, V. (2021). Imidazole Appended Novel Phenoxyquinolines as New Inhibitors of α-Amylase and α-Glucosidase Evidenced with Molecular Docking Studies. Polycyclic Aromatic Compounds, 1-13.
  • [14] Ali, I., Nadeem Lone, M., A Al-Othman, Z., Al-Warthan, A., and Marsin Sanagi, M. (2015). Heterocyclic scaffolds: centrality in anticancer drug development. Current Drug Targets, 16(7), 711-734.
  • [15] Groessl, M., Reisner, E., Hartinger, C. G., Eichinger, R., Semenova, O., Timerbaev, A. R., Jakupec, M. A., Arion, V. B., and Keppler, B. K. (2007). Structure− activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L (S-dmso) ruthenate (III)](L= imidazole, indazole, 1, 2, 4-triazole, 4-amino-1, 2, 4-triazole, and 1-methyl-1, 2, 4-triazole): Aquation, redox properties, protein binding, and antiproliferative activity. Journal of Medicinal Chemistry, 50(9), 2185-2193.
  • [16] Ali, I., Lone, M. N., and Aboul-Enein, H. Y. (2017). Imidazoles as potential anticancer agents. MedChemComm, 8(9), 1742-1773.
  • [17] Al-Blewi, F., Shaikh, S. A., Naqvi, A., Aljohani, F., Aouad, M. R., Ihmaid, S., and Rezki, N. (2021). Design and synthesis of novel imidazole derivatives possessing triazole pharmacophore with potent anticancer activity, and in silico ADMET with GSK-3β molecular docking investigations. International Journal of Molecular Sciences, 22(3), 1162.
  • [18] Yadav, S. B., Sonvane, S. S., and Sekar, N. (2020). Novel blue-green emitting NLOphoric triphenylamine-imidazole based donor-π-acceptor compound: Solvatochromism, DFT, TD-DFT and non-linear optical studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117421. [19] Dinda, J., Ray, U., Mostafa, G., Lu, T. H., Usman, A., Razak, I. A., Chantrapromma, S., Fun, H. K., and Sinha, C. (2003). Copper (I)–azoimidazoles: a comparative account on the structure and electronic properties of copper (I) complexes of 1-methyl-2-(phenylazo) imidazole and 1-alkyl-2-(naphthyl-(α/β)-azo) imidazoles. Polyhedron, 22(2), 247-255.
  • [20] Wang, Y., Shen, S. Q., Zhou, J. H., Wang, T., Wang, S. N., and Liu, G. X. (2013). Synthesis, structural diversities and properties of a series of transition metal-organic frameworks based on asymmetric dicarboxylic acid and N-donor auxiliary ligand. Inorganic Chemistry Communications, 30, 5-12.
  • [21] Yavuz, S. Ç., Akkoc, S., and Sarıpınar, E. (2019). The cytotoxic activities of imidazole derivatives prepared from various guanylhydrazone and phenylglyoxal monohydrate. Synthetic Communications, 49(22), 3198-3209.
  • [22] Spartan'10, version 1.1.0. Wavefunction, Inc. Irvine, CA. 2010.
  • [23] Khodja, I. A., Boulebd, H., Bensouici, C., and Belfaitah, A. (2020). Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz) imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. Journal of Molecular Structure, 1218, 128527.
  • [24] D.S.J.S.D. Biovia, CA, USA, Discovery Studio Visualizer, (2017) 936.
  • [25] Padmaja, L., Ravikumar, C., Sajan, D., Hubert Joe, I., Jayakumar, V. S., Pettit, G. R., and Faurskov Nielsen, O. (2009). Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(4), 419-428.
  • [26] Bilkan, Ç. Determination of structural properties of some important polymers used as interfacial layer in fabrication of schottky barrier diodes (SBDs). Journal of the Institute of Science and Technology, 10(1), 225-233.
  • [27] Wojciechowski, A., Raposo, M. M. M., Castro, M. C. R., Kuznik, W., Fuks-Janczarek, I., Pokladko-Kowar, M., and Bureš, F. (2014). Nonlinear optoelectronic materials formed by push–pull (bi) thiophene derivatives functionalized with di (tri) cyanovinyl acceptor groups. Journal of Materials Science: Materials in Electronics, 25(4), 1745-1750.
  • [28] Ioakimidis, L., Thoukydidis, L., Mirza, A., Naeem, S., & Reynisson, J. (2008). Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR & Combinatorial Science, 27(4), 445-456.
  • [29] Soriano-Ursúa, M. A., Trujillo-Ferrara, J. G., Álvarez-Cedillo, J., & Correa-Basurto, J. (2010). Docking studies on a refined human β2 adrenoceptor model yield theoretical affinity values in function with experimental values for R-ligands, but not for S-antagonists. Journal of Molecular Modeling, 16(3), 401-409.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Sevtap Çağlar Yavuz 0000-0001-6497-2907

Publication Date December 31, 2022
Submission Date September 5, 2022
Published in Issue Year 2022 Issue: 051

Cite

IEEE S. Çağlar Yavuz, “THEORETICAL ELECTRONIC PROPERTIES, ADMET PREDICTION, and MOLECULAR DOCKING STUDIES of SOME IMIDAZOLE DERIVATIVES”, JSR-A, no. 051, pp. 340–357, December 2022.