Review
BibTex RIS Cite

BIOSENSORS: TYPES, APPLICATIONS, AND FUTURE ADVANTAGES

Year 2023, Issue: 052, 457 - 481, 29.03.2023
https://doi.org/10.59313/jsr-a.1221899

Abstract

With the developing technology and increasing population, nanotechnology has started to be used in all areas of life. The use of biosensors, which have an important place in the field of nanotechnology, is increasing day by day. Biosensors can be defined as biological devices that help us interpret the analyte concentration in a sample by converting it into measurable signals. Advantageously, it has both speed and high precision. There are many types of biosensors used in many fields. These; enzymatic, nucleic acid, electrochemical and optical biosensors. All of them can have different components and uses. Biosensors are used especially in early diagnosis of diseases, environment and agriculture, pharmaceutical industry, defense industry and food industry. For example, biosensors are used in the treatment of oncological diseases using electrochemical impedance spectroscopy, in the determination of pesticides, which is one of the environmental pollutants, in the potentiometric analysis of glutamate, in the detection of chemical warfare agents and toxic substances. In addition, it is expected that the usage areas of biosensors will become widespread in the future, and they will be used more widely in the early diagnosis of diseases. At this point, the use of biosensors has increased worldwide and has attracted the attention of scientists. In this study, classification of biosensors, application areas, characterization, studies on biosensors, technologies developed and applied for the future are mentioned.

Thanks

No support has been received.

References

  • [1] Mamalis, A.G., (2007)., Recent advances in nanotechnology, Journal of Materials Processing Technology, 181, 52–58. [2] Banotra, M., Kumar, A., Sharma, B.C., Nandan, B., Verma, A., Kumar, R., Gupta, V., Bhagat, S., (2017), Prospectus of use of nanotechnology in agriculture-a review article, International Journal of Current Microbiology and Applied Sciences, Int.J. Curr.Microbiol.App.Sci, 6, 1541–1551. [3] Vashist, S.K., Venkatesh, A. G., Mitsakakis, K., Czilwik, G., Roth, G., von Stetten, F., Zengerle, R., (2012), Nanotechnology-based biosensors and diagnostics: technology push versus ındustrial/healthcare requirements, BioNanoScience, 2, 115–126. [4] Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., and Sijiao, L., (2004), Nanotechnology and biosensors, Biotechnology Advances, 22, 505–518.
  • [5] Bagriyanik, D.B., (2011)., Potansiyometrik esaslı glutamin biyosensörü tasarlanması ve karakterizasyonu, Master Thesis, Graduate School of Natural and Applied Sciences, İstanbul, 88pp. [6] Altungeyik, Y. (2014)., Biyolojik uygulamalar için direnç sensörleri, Master Thesis, Department of Physics, Kirikkale University, Kirikkale, 63pp. [7] Mustafa, D. and Sezgintürk, K., (2013)., Bir meme kanseri biyomarkeri olan her 3 analizi için biyosensör sisteminin geliştirilmesi, Master Thesis, Graduate School of Natural and Applied Sciences, Namik Kemal University, Tekirdag, 64pp. [8] Purohit, B., Vernekar, P.R., Shetti, N.P., and Chandra, P., (2020), Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis, Sensors International, 1, 100040. [9] Liu, H., Ge, J., Ma, E., and Yang, L., (2019), Advanced biomaterials for biosensor and theranostics. Biomaterials in Translational Medicine: A Biomaterials Approach, 213–255. [10] Huang, X., Zhu, Y., and Kianfar, E., (2021), Nano biosensors: properties, applications and electrochemical techniques, Journal of Materials Research and Technology, 12, 1649–1672. [11] Karunakaran, C., Rajkumar, R., and Bhargava, K., (2015)., Introduction to biosensors. Biosensors and Bioelectronics, 1–68.
  • [12] Naresh, V. and Lee, N., (2021), A review on biosensors and recent development of nanostructured materials-enabled biosensors, Sensors, 21 , 1109.
  • [13] Canver M.İ., (2018), Enzimatik tabanlı bakteriyel biyosensör, Master Thesis, Department of Bioengineering, Hacattepe University, Ankara, 49pp.
  • [14] Cırak, T., (2014), Biyolojik moleküllerin tayinine yönelik kantilever bazlı biyosensör sisteminin geliştirilmesi, PhD Thesis, Hacattepe University, Ankara, 184pp. [15] Özcan, L., (2008), Polipirol iletken polimerinin biyosensör olarak kullanımı, PhD Thesis, Department of Chemistry, Anadolu University, Eskisehir, 114pp.
  • [16] Atan, Ç., (2013), ZnO nanorod temelli glukoz biyosensörü hazırlanması ve kan serumunda glukoz tayininde kullanılması. Master Thesis, Graduate School of Natural and Applied Sciences, Yildiz Technical University, İstanbul, 93pp.
  • [17] Boz, B., Paylan, İ.C., Kızmaz, M.Z., and Erkan, S., (2017), Biyosensörler ve tarım alanında kullanımı, Dergi Park Akademik, 13, 141–148.
  • [18] Papadakis, G., Skandalis, N., Dimopoulou, A., Glynos, P., and Gizeli, E., (2017), Biyosensörler ve tarım alanında kullanımı, Journal of Agricultural Machinery Science, 13, 141–148.
  • [19] Tüylek, Z., (2021), Nanoteknoloji uygulamalarında hayatımıza yansımalar, Eurasian Journal of Biological and Chemical Sciences, 4, 69–79.
  • [20] Yılmaz, T. (2021). Gıda ürünlerinde mikrobiyal bozulmaya neden olan pseudeomonas spp bakterisinin yüzey plazmon rezonans (spr) temelli biyosensör kullanılarak belirlenmesi, Master Thesis, Department of Bioengineering, Hacattepe University, Ankara, 111pp.
  • [21] Tabanlı, M., Biyosensörü, P., İzlenmesi, S.T., and Çakar, B., (2018), Mikrobiyal ped biyosensörü ile su toksitesi izlenmesi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7, 484–491.
  • [22] Tüylek, Z., (2019), Nanotıp alanında kullanılan sistemler, Archives Medical Review Journal, 28, 119–129.
  • [23] Baryeh, K., Takalkar, S., Lund, M., and Liu, G., (2017), Introduction to medical biosensors for point of care applications, Medical Biosensors for Point of Care (POC) Applications, 3–25.
  • [24] Sıtkı, M., Üniversitesi, K., and Bölümü, F., (2019), Nanoteknolojinin insan sağlığına faydalı ve zararlı yönleri, Ordu University Journal of Science and Tecnology, 9, 136–148.
  • [25] Türkmen, H., (2013), Tiyofenin elektrokimyasal polimerizasyonu karakterizasyonu ve biyosensör olarak geliştirilmesi, Master Thesis, Department of Chemistry, Graduate School of Natural and Applied Sciences, Nevsehir Hacıbektaşveli University, Nevsehir, 62pp.
  • [26] Canturk, E., (2013), Amino asitlere duyarlı biyosensörlerin hazırlanması ve çalışma şartlarının belirlenmesi, Master Thesis, Graduate School of Natural and Applied Sciences, Department of Chemistry, Gazi Osman Paşa University, Tokat, .
  • [27] Yun, Y. H., Dong, Z., Shanov, V., Heineman, W.R., Halsall, H. B., Bhattacharya, A., Conforti, L., Narayan, R. K., Ball, W. S., Schulz, M. J., (2007), Nanotube electrodes and biosensors, Nano Today, 2, 30–37.
  • [28] Tuylek, Z., (2021), Biyolojik Sistemlerde gelecekteki nano / biyosensör ürünlerine hazırlık, Uluslararası Biyosistem Mühendisliği Dergisi, 2, 17–39.
  • [29] Koyun, H.N., (2022), Ferritin tayini için grafen alan etkili biyosensör tasarımı geliştirilmesi, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, 87pp.
  • [30] Wu, X., Mu, F., Wang, Y., and Zhao, H., (2018), Graphene and graphene-based nanomaterials for dna detection: a review, Molecules, 23, 2050.
  • [31] Savk, A., Özdil, B., Demirkan, B., Nas, M. S., Calimli, M. H., Alma, M. H., Inamuddin., Asiri, A. M., Sen, F., (2019), Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid, Materials Science and Engineering, 248–254.
  • [32] Arikan, K., Burhan, H., Sahin, E., and Sen, F., (2022), A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support, Chemosphere, 291, 132718.
  • [33] Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., and Han, G., (2013), A survey of body sensor networks, Sensors, 13, 5406–5447.
  • [34] Istek, M.M., Bulca, S, (2021), Gıda kontaminantlarının analizine yönelik elektrokimyasal biyosensör, Mehmet Akif Ersoy University, Fen Bilimleri Enstitüsü Dergisi, 12, 532 – 544.
  • [35] Gutés, A., Céspedes, F., Alegret, S., and del Valle, M., (2005), Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosensors and Bioelectronics, 20 (8 SPEC. ISS.), 1668–1673.
  • [36] Mehrotra, P., (2016), Biosensors and their applications – a review, Journal of Oral Biology and Craniofacial Research, 6 153–159.
  • [37] Shukla, S.K., Govender, P.P., and Tiwari, A., (2016), Polymeric micellar structures for biosensor technology, 1st ed. Elsevier Inc.
  • [38] Huang, R., He, N., and Li, Z., (2018), Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers, Biosensors and Bioelectronics, 109, 27–34.
  • [39] Damborský, P., Švitel, J., and Katrlík, J., (2016), Optical biosensors. Essays in Biochemistry, 60, 91–100.
  • [40] Thévenot, D.R., Toth, K., Durst, R.A., and Wilson, G.S., (2001), Electrochemical biosensors: recommended definitions and classification. International Union Of Pure And Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry), Analytical Chemistry Division, Commission V.5 (Electroanalytical. Biosensors and Bioelectronics, 16, 121–131.
  • [41] Najeeb, M.A., Ahmad, Z., Shakoor, R.A., Mohamed, A.M.A., and Kahraman, R., (2017), A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements. Talanta, 168 52–61.
  • [42] Clark, L.C. and Lyons, C., (1962), Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, 102, 29–45.
  • [43] Nguyen, H.H., Lee, S.H., Lee, U.J., Fermin, C.D., and Kim, M., (2019), Immobilized enzymes in biosensor applications, Materials, 12, 1–34.
  • [44] Rathee, K., Dhull, V., Dhull, R., and Singh, S., (2016), Biosensors based on electrochemical lactate detection: a comprehensive review, Biochemistry and Biophysics Reports, 5, 35–54.
  • [45] Zhao, Z., Lei, W., Zhang, X., Wang, B., and Jiang, H., (2010), ZnO-based amperometric enzyme biosensors, Sensors, 10, 1216–1231.
  • [46] Wilson, G.S. and Hu, Y., (2000), Enzyme-based biosensors for in vivo measurements, Chemical Reviews, 100, 2693–2704.
  • [47] Keskin, M., and Arslan, F., (2020), Biyosensörler, Gazi Üniversitesi Fen Fakültesi Dergisi, 1, 51–60.
  • [48] Tanaka, M. and Sackmann, E., (2005), Polymer-supported membranes as models of the cell surface, Nature, 437, 656–663.
  • [49] Paleček, E., (1988), New trends in electrochemical analysis of nucleic acids, Journal of Electroanalytical Chemistry, 254, 179–194.
  • [50] Jelen, F., Erdem, A., and Paleček, E., (2002), Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode, Bioelectrochemistry, 55, 165–167.
  • [51] Erdem, A. and Ozsoz, M., (2002), Electrochemical DNA biosensors based on DNA-drug interactions, Electroanalysis, 14, 965–974.
  • [52] Karadeniz, H., Alparslan, L., Erdem, A., and Karasulu, E., (2007), Electrochemical investigation of interaction between mitomycin C and DNA in a novel drug-delivery system, Journal of Pharmaceutical and Biomedical Analysis, 45, 322–326.
  • [53] Hartwell, S.K. and Grudpan, K., (2010), Flow based immuno/bioassay and trends in micro-immuno/biosensors, Microchimica Acta, 169, 201–220.
  • [54] Prodromidis, M.I., (2010), Impedimetric immunosensors- a review, Electrochimica Acta, 55, 4227–4233.
  • [55] Ricci, F., Adornetto, G., and Palleschi, G., (2012), A review of experimental aspects of electrochemical immunosensors, Electrochimica Acta, 84, 74–83.
  • [56] Rassaei, L., Olthuis, W., Tsujimura, S., Sudhölter, E.J.R., and van den Berg, A., (2014), Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry, 406, 123–137.
  • [57] Ramanathan, K. and Danielsson, B., (2001), Principles and applications of thermal biosensors, Biosensors and Bioelectronics, 16, 417–423.
  • [58] Ibupoto, Z.H., Shah, S.M.U.A., Khun, K., and Willander, M., (2012), Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase, Sensors, 12, 2456–2466.
  • [59] Sun, C., Wang, D., Zhang, M., Ni, Y., Shen, X., Song, Y., Geng, Z., Xu, W., Liu, F., Mao, C., (2015), Novel l-lactic acid biosensors based on conducting polypyrrole-block copolymer nanoparticles. Analyst, 140, 797–802.
  • [60] Pérez, S., Sánchez, S., and Fàbregas, E., (2012), Enzymatic strategies to construct l-lactate biosensors based on polysulfone/carbon nanotubes membranes, Electroanalysis, 24, 967–974.
  • [61] Bekmezci, M., Bayat, R., Erduran, V., and Sen, F., (2022), Biofunctionalization of functionalized nanomaterials for electrochemical sensors, Functionalized Nanomaterial-Based Electrochemical Sensor, Principles, Fabrication Methods, and Applications, 55–69.
  • [62] Şavk, A., Aydın, H., Cellat, K., and Şen, F., (2020), A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite, Journal of Molecular Liquids, 300, 112355.
  • [63] Heineman, W.R., Anderson, C.W., and Halsall, H.B., (1979), Immunoassay by differential pulse polarography, Science. 204, 865–866.
  • [64] Ronkainen, N.J., Halsall, H.B., and Heineman, W.R., (2010), Electrochemical biosensors, Chemical Society Reviews, 39, 1747–1763.
  • [65] Wang, J., (2006), Electrochemical biosensors: towards point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21, 1887–1892.
  • [66] Dhull, V., Gahlaut, A., Dilbaghi, N., and Hooda, V., (2013), Acetylcholinesterase biosensors for electrochemical detection of organophosphorus compounds: a review, Biochemistry Research International, 1–18.
  • [67] Pizzariello, A., Stredanský, M., Stredanská, S., and Miertuš, S., (2001)., Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator, Talanta, 54, 763–772.
  • [68] Thévenot, D.R., Toth, K., Durst, R.A., and Wilson, G.S., (2001), Electrochemical biosensors: recommended definitions and classification, Biosensors and Bioelectronics, 16, 121–131.
  • [69] Buck, R.P. and Lindner, E., (1994), Recomendations for nomenclature of ion-selective electrodes (IUPAC recommendations), Pure and Applied Chemistry, 66, 2527–2536.
  • [70] Soldatkin, O. O., Kucherenko, I. S., Pyeshkova, V. M., Kukla, A. L., Jaffrezic-Renault, N., El'skaya, A. V., Dzyadevych, S. V., Soldatkin, A. P., (2012), Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry. 83, 25–30.
  • [71] Chen, C. and Wang, J., (2020), Optical biosensors: an exhaustive and comprehensive review, Analyst, 145, 1605–1628.
  • [72] Fan, X., White, I.M., Shopova, S.I., Zhu, H., Suter, J.D., and Sun, Y., (2008), Sensitive optical biosensors for unlabeled targets: A review, Analytica Chimica Acta, 620, 8–26.
  • [73] Velasco-Garcia, M.N., (2009), Optical biosensors for probing at the cellular level: A review of recent progress and future prospects, Seminars in Cell and Developmental Biology, 20, 27–33.
  • [74] Homola, J., Yee, S.S., and Myszka, D., (2008), Surface plasmon resonance bıosensors, Optical Biosensors, 185–242.
  • [75] Pohanka, M., (2018), Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications, Materials, 11, 448.
  • [76] Tothill, I.E., (2001), Biosensors developments and potential applications in the agricultural diagnosis sector. Computers and Electronics in Agriculture, 30, 205–218.
  • [77] Ozoglu, Ö., Unal L, M.A., and Gunes, E., (2017), Biyosensörler: gıda ve sağlık alanında laktat biyosensörleri, Turk Yasam Bilimleri Dergisi, 2, 180–193.
  • [78] Mello, L.D. and Kubota, L.T., (2002), Review of the use of biosensors as analytical tools in the food and drink industries, Food Chemistry, 77, 237–256.
  • [79] Marrazza, G., (2014), Piezoelectric biosensors for organophosphate and carbamate pesticides: A review, Biosensors, 4, 301–317.
  • [80] Yakovleva, M., Bhand, S., and Danielsson, B., (2013), The enzyme thermistor-a realistic biosensor concept. A critical review, Analytica Chimica Acta, 766 1–12.
  • [81] Oksuz, O., Sezginturk, M.K., (2013), Nabiltem personelinin enstrümental uzmanlıklarının iyilestirilmesinin ve laboratuvar bünyesinde gerçeklestirilen analiz hizmetlerinin kalitesinin ve güvenilirliğinin arttırılmasının arastırılması, J Conserv Dent, 16.
  • [82] Atar, H. and Colgecen, H., (2021), Gümüş nanopartiküllerinin biyosentezi ve biyosensör materyali olarak kullanımı, Commagene Journal of Biology, 5, 214-225.
  • [83] Singh, S., Kumar, V., Dhanjal, S., Datta, S., Prasad, R., Singh, J., Singh, S., Kumar, V., Dhanjal, D. S., Singh, J., Datta, S., Prasad, R., (2020), Biological biosensors for monitoring and diagnosis, SpringerLink, 317–335.
  • [84] Cengiz O., (2010), Temas açısı ölçüm cihazı tasarımı. Master Thesis, Graduate School of Natural and Applied Sciences, Istanbul Technical University, Istanbul, 83pp.
  • [85] Doğan, B. and Öztürk, M.M., (2019), Ni-Ti akıllı alaşım ince filmin sıcaklığa bağlı x-ray kırınımı ile karakterizasyonu ve faz dönüşümü tespiti, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 1-11.
  • [86] Ronkainen, N.J., Halsall, H.B., and Heineman, W.R., (2010), Electrochemical biosensors, Chemical Society Reviews, 39, 1747–1763.
  • [87] Sobhanie, E., Salehnia, F., Xu, G., Hamidipanah, Y., Arshian, S., Firoozbakhtian, A., Hosseini, M., Ganjali, M. R., Hanif, S., (2022), Recent trends and advancements in electrochemiluminescence biosensors for human virus detection, TrAC Trends in Analytical Chemistry, 157, 116727.
  • [88] Drobysh, M., Ramanaviciene, A., Viter, R., Chen, C. F., Samukaite-Bubniene, U., Ratautaite, V., Ramanavicius, A., (2022), Biosensors for the determination of sars-cov-2 virus and diagnosis of covıd-19 ınfection, International Journal of Molecular Sciences, 23, 666.
  • [89] Kaur, B., Kumar, S., and Kaushik, B.K., (2022), Recent advancements in optical biosensors for cancer detection, Biosensors and Bioelectronics, 197, 113805.
  • [90] Arikan, K., Burhan, H., Bayat, R., and Sen, F., (2022), Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT, Chemosphere, 291 132720.
  • [91] Wei, X., Yin, M., Zhang, L., Lin, H., Wang, J., Xie, W., Xu, D., (2022), Surface plasmon resonance (SPR) biosensor for detection of mycotoxins: A review, Journal of Immunological Methods, 510, 113349.
  • [92] Mi, F., Hu, C., Wang, Y., Wang, L., Peng, F., Geng, P. F., Guan, M, (2022), Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review, Analytical and Bioanalytical Chemistry, 414, 2883–2902.
  • [93] Azzouz, A., Hejji, L., Kim, K. H., Kukkar, D., Souhail, B., Bhardwaj, N., Brown, R. J.C., Zhang, W., (2022), Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection, Biosensors and Bioelectronics, 197, 113767.
  • [94] Mahmoudpour, M., Ezzati Nazhad Dolatabadi, J., Torbati, M., Pirpour Tazehkand, A., Homayouni-Rad, A., and de la Guardia, M., (2019), Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection, Biosensors and Bioelectronics, 143,111603.
  • [95] Ribeiro, S.C., Fernandes, R., Moreira, F.T.C., and Sales, M.G.F., (2022), Potentiometric biosensor based on artificial antibodies for an alzheimer biomarker detection. Applied Sciences, 12, 3625.
  • [96] Bankole, O.E., Verma, D.K., Chávez González, M.L., Ceferino, J.G., Sandoval-Cortés, J., and Aguilar, C.N., (2022), Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience, Food Bioscience, 47, 101695.
  • [97] Rossi, M.P., Ye, H., Gogotsi, Y., Babu, S., Ndungu, P., and Bradley, J.-C., (2004), Environmental scanning electron microscopy study of water in carbon nanopipes, Nano Letters, 4, 989–993.
  • [98] Donald, A.M., (2003), The use of environmental scanning electron microscopy for imaging wet and insulating materials, Nature Materials, 2, 511–516.
  • [99] Turkcan., C., (2021), Giyilebilir doku elektronigi, Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14, 27–34.
  • [100] Voss, A., Schroeder, R., Schulz, S., Haueisen, J., Vogler, S., Horn, P., Stallmach, A., Reuken, P., (2022), Detection of liver dysfunction using a wearable electronic nose system based on semiconductor metal oxide sensors, Biosensors, 12, 70.
  • [101] Kokbas, U., Kayrin, L., and Tuli, A., (2013), Biyosensörler ve tıpta kullanım alanları, Arşiv Kaynak Tarama Dergisi, 22, 499–513.
  • [102]Çelebier, İ., (2022), Kanser tanısında kullanılmak üzere yeni nesil kolorimetrik biyosensörlerin geliştirilmesi, PhD Thesis, Department of Biology, Hacettepe University, Ankara, 95pp.
  • [103]Tuylek, Z., (2017), Biyosensörler ve nanoteknolojik etkileşim, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6, 71–80.
  • [104]Tuylek, Z, (2021), Biyolojik sistemlerde gelecekteki nano / biyosensör ürünlerine hazırlık, Biyosistem Mühendisliği Dergisi, 17–39.
  • [105]Yüksel, M., (2012), Protein algılamasına yönelik nano-biyosensörlerin yeni malzeme ve tekniklerle geliştirilmesi, PhD Thesis, Graduate School of Natural and Applied Sciences, Department of Physics, Kırıkkale University, Kırakkale, 82pp.
  • [106] Tuylek, Z., (2019), Nanotıp alanında kullanılan sistemler, Arşiv Kaynak Tarama Dergisi, 119–129.
  • [107] Karakaş, T.B., (2021), Biosensors designed for rapid detection of sars-cov-2, Dergipark, 4, 491–506.
  • [108]Göktürk, I., (2018), Nanobiyosensörler: hastalık teşhisi için gelecek vaat ediyor mu? Bioreg Bilim, 34–40.
  • [109]Tüylek, Z., (2021), Nano-medicine and the new treatment methods, Review Article, Eurasıan Journal Of Health Scıences, 4, 121–131.
  • [110] Abid, S. A., Ahmed Muneer, A., Al-Kadmy, I. M.S., Sattar, A. A., Beshbishy, A.M., Batiha, G.E.S., Hetta, H.F., (2021), Biosensors as a future diagnostic approach for COVID-19. Life Sciences, 273 119117.
  • [111] Ma, Z., Meliana, C., Munawaroh, H. S. H., Karaman, C., Karimi-Maleh, H., Low, S. S., Show, P. L., (2022), Recent advances in the analytical strategies of microbial biosensor for detection of pollutants, Chemosphere, 306, 135515.
  • [112]Dzyadevych, S. v., Arkhypova, V.N., Soldatkin, A.P., El’skaya, A. v., Martelet, C., and Jaffrezic-Renault, N., (2008), Amperometric enzyme biosensors: past, present and future, IRBM. 29, 171–180.
Year 2023, Issue: 052, 457 - 481, 29.03.2023
https://doi.org/10.59313/jsr-a.1221899

Abstract

References

  • [1] Mamalis, A.G., (2007)., Recent advances in nanotechnology, Journal of Materials Processing Technology, 181, 52–58. [2] Banotra, M., Kumar, A., Sharma, B.C., Nandan, B., Verma, A., Kumar, R., Gupta, V., Bhagat, S., (2017), Prospectus of use of nanotechnology in agriculture-a review article, International Journal of Current Microbiology and Applied Sciences, Int.J. Curr.Microbiol.App.Sci, 6, 1541–1551. [3] Vashist, S.K., Venkatesh, A. G., Mitsakakis, K., Czilwik, G., Roth, G., von Stetten, F., Zengerle, R., (2012), Nanotechnology-based biosensors and diagnostics: technology push versus ındustrial/healthcare requirements, BioNanoScience, 2, 115–126. [4] Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., and Sijiao, L., (2004), Nanotechnology and biosensors, Biotechnology Advances, 22, 505–518.
  • [5] Bagriyanik, D.B., (2011)., Potansiyometrik esaslı glutamin biyosensörü tasarlanması ve karakterizasyonu, Master Thesis, Graduate School of Natural and Applied Sciences, İstanbul, 88pp. [6] Altungeyik, Y. (2014)., Biyolojik uygulamalar için direnç sensörleri, Master Thesis, Department of Physics, Kirikkale University, Kirikkale, 63pp. [7] Mustafa, D. and Sezgintürk, K., (2013)., Bir meme kanseri biyomarkeri olan her 3 analizi için biyosensör sisteminin geliştirilmesi, Master Thesis, Graduate School of Natural and Applied Sciences, Namik Kemal University, Tekirdag, 64pp. [8] Purohit, B., Vernekar, P.R., Shetti, N.P., and Chandra, P., (2020), Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis, Sensors International, 1, 100040. [9] Liu, H., Ge, J., Ma, E., and Yang, L., (2019), Advanced biomaterials for biosensor and theranostics. Biomaterials in Translational Medicine: A Biomaterials Approach, 213–255. [10] Huang, X., Zhu, Y., and Kianfar, E., (2021), Nano biosensors: properties, applications and electrochemical techniques, Journal of Materials Research and Technology, 12, 1649–1672. [11] Karunakaran, C., Rajkumar, R., and Bhargava, K., (2015)., Introduction to biosensors. Biosensors and Bioelectronics, 1–68.
  • [12] Naresh, V. and Lee, N., (2021), A review on biosensors and recent development of nanostructured materials-enabled biosensors, Sensors, 21 , 1109.
  • [13] Canver M.İ., (2018), Enzimatik tabanlı bakteriyel biyosensör, Master Thesis, Department of Bioengineering, Hacattepe University, Ankara, 49pp.
  • [14] Cırak, T., (2014), Biyolojik moleküllerin tayinine yönelik kantilever bazlı biyosensör sisteminin geliştirilmesi, PhD Thesis, Hacattepe University, Ankara, 184pp. [15] Özcan, L., (2008), Polipirol iletken polimerinin biyosensör olarak kullanımı, PhD Thesis, Department of Chemistry, Anadolu University, Eskisehir, 114pp.
  • [16] Atan, Ç., (2013), ZnO nanorod temelli glukoz biyosensörü hazırlanması ve kan serumunda glukoz tayininde kullanılması. Master Thesis, Graduate School of Natural and Applied Sciences, Yildiz Technical University, İstanbul, 93pp.
  • [17] Boz, B., Paylan, İ.C., Kızmaz, M.Z., and Erkan, S., (2017), Biyosensörler ve tarım alanında kullanımı, Dergi Park Akademik, 13, 141–148.
  • [18] Papadakis, G., Skandalis, N., Dimopoulou, A., Glynos, P., and Gizeli, E., (2017), Biyosensörler ve tarım alanında kullanımı, Journal of Agricultural Machinery Science, 13, 141–148.
  • [19] Tüylek, Z., (2021), Nanoteknoloji uygulamalarında hayatımıza yansımalar, Eurasian Journal of Biological and Chemical Sciences, 4, 69–79.
  • [20] Yılmaz, T. (2021). Gıda ürünlerinde mikrobiyal bozulmaya neden olan pseudeomonas spp bakterisinin yüzey plazmon rezonans (spr) temelli biyosensör kullanılarak belirlenmesi, Master Thesis, Department of Bioengineering, Hacattepe University, Ankara, 111pp.
  • [21] Tabanlı, M., Biyosensörü, P., İzlenmesi, S.T., and Çakar, B., (2018), Mikrobiyal ped biyosensörü ile su toksitesi izlenmesi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7, 484–491.
  • [22] Tüylek, Z., (2019), Nanotıp alanında kullanılan sistemler, Archives Medical Review Journal, 28, 119–129.
  • [23] Baryeh, K., Takalkar, S., Lund, M., and Liu, G., (2017), Introduction to medical biosensors for point of care applications, Medical Biosensors for Point of Care (POC) Applications, 3–25.
  • [24] Sıtkı, M., Üniversitesi, K., and Bölümü, F., (2019), Nanoteknolojinin insan sağlığına faydalı ve zararlı yönleri, Ordu University Journal of Science and Tecnology, 9, 136–148.
  • [25] Türkmen, H., (2013), Tiyofenin elektrokimyasal polimerizasyonu karakterizasyonu ve biyosensör olarak geliştirilmesi, Master Thesis, Department of Chemistry, Graduate School of Natural and Applied Sciences, Nevsehir Hacıbektaşveli University, Nevsehir, 62pp.
  • [26] Canturk, E., (2013), Amino asitlere duyarlı biyosensörlerin hazırlanması ve çalışma şartlarının belirlenmesi, Master Thesis, Graduate School of Natural and Applied Sciences, Department of Chemistry, Gazi Osman Paşa University, Tokat, .
  • [27] Yun, Y. H., Dong, Z., Shanov, V., Heineman, W.R., Halsall, H. B., Bhattacharya, A., Conforti, L., Narayan, R. K., Ball, W. S., Schulz, M. J., (2007), Nanotube electrodes and biosensors, Nano Today, 2, 30–37.
  • [28] Tuylek, Z., (2021), Biyolojik Sistemlerde gelecekteki nano / biyosensör ürünlerine hazırlık, Uluslararası Biyosistem Mühendisliği Dergisi, 2, 17–39.
  • [29] Koyun, H.N., (2022), Ferritin tayini için grafen alan etkili biyosensör tasarımı geliştirilmesi, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, 87pp.
  • [30] Wu, X., Mu, F., Wang, Y., and Zhao, H., (2018), Graphene and graphene-based nanomaterials for dna detection: a review, Molecules, 23, 2050.
  • [31] Savk, A., Özdil, B., Demirkan, B., Nas, M. S., Calimli, M. H., Alma, M. H., Inamuddin., Asiri, A. M., Sen, F., (2019), Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid, Materials Science and Engineering, 248–254.
  • [32] Arikan, K., Burhan, H., Sahin, E., and Sen, F., (2022), A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support, Chemosphere, 291, 132718.
  • [33] Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., and Han, G., (2013), A survey of body sensor networks, Sensors, 13, 5406–5447.
  • [34] Istek, M.M., Bulca, S, (2021), Gıda kontaminantlarının analizine yönelik elektrokimyasal biyosensör, Mehmet Akif Ersoy University, Fen Bilimleri Enstitüsü Dergisi, 12, 532 – 544.
  • [35] Gutés, A., Céspedes, F., Alegret, S., and del Valle, M., (2005), Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosensors and Bioelectronics, 20 (8 SPEC. ISS.), 1668–1673.
  • [36] Mehrotra, P., (2016), Biosensors and their applications – a review, Journal of Oral Biology and Craniofacial Research, 6 153–159.
  • [37] Shukla, S.K., Govender, P.P., and Tiwari, A., (2016), Polymeric micellar structures for biosensor technology, 1st ed. Elsevier Inc.
  • [38] Huang, R., He, N., and Li, Z., (2018), Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers, Biosensors and Bioelectronics, 109, 27–34.
  • [39] Damborský, P., Švitel, J., and Katrlík, J., (2016), Optical biosensors. Essays in Biochemistry, 60, 91–100.
  • [40] Thévenot, D.R., Toth, K., Durst, R.A., and Wilson, G.S., (2001), Electrochemical biosensors: recommended definitions and classification. International Union Of Pure And Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry), Analytical Chemistry Division, Commission V.5 (Electroanalytical. Biosensors and Bioelectronics, 16, 121–131.
  • [41] Najeeb, M.A., Ahmad, Z., Shakoor, R.A., Mohamed, A.M.A., and Kahraman, R., (2017), A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements. Talanta, 168 52–61.
  • [42] Clark, L.C. and Lyons, C., (1962), Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, 102, 29–45.
  • [43] Nguyen, H.H., Lee, S.H., Lee, U.J., Fermin, C.D., and Kim, M., (2019), Immobilized enzymes in biosensor applications, Materials, 12, 1–34.
  • [44] Rathee, K., Dhull, V., Dhull, R., and Singh, S., (2016), Biosensors based on electrochemical lactate detection: a comprehensive review, Biochemistry and Biophysics Reports, 5, 35–54.
  • [45] Zhao, Z., Lei, W., Zhang, X., Wang, B., and Jiang, H., (2010), ZnO-based amperometric enzyme biosensors, Sensors, 10, 1216–1231.
  • [46] Wilson, G.S. and Hu, Y., (2000), Enzyme-based biosensors for in vivo measurements, Chemical Reviews, 100, 2693–2704.
  • [47] Keskin, M., and Arslan, F., (2020), Biyosensörler, Gazi Üniversitesi Fen Fakültesi Dergisi, 1, 51–60.
  • [48] Tanaka, M. and Sackmann, E., (2005), Polymer-supported membranes as models of the cell surface, Nature, 437, 656–663.
  • [49] Paleček, E., (1988), New trends in electrochemical analysis of nucleic acids, Journal of Electroanalytical Chemistry, 254, 179–194.
  • [50] Jelen, F., Erdem, A., and Paleček, E., (2002), Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode, Bioelectrochemistry, 55, 165–167.
  • [51] Erdem, A. and Ozsoz, M., (2002), Electrochemical DNA biosensors based on DNA-drug interactions, Electroanalysis, 14, 965–974.
  • [52] Karadeniz, H., Alparslan, L., Erdem, A., and Karasulu, E., (2007), Electrochemical investigation of interaction between mitomycin C and DNA in a novel drug-delivery system, Journal of Pharmaceutical and Biomedical Analysis, 45, 322–326.
  • [53] Hartwell, S.K. and Grudpan, K., (2010), Flow based immuno/bioassay and trends in micro-immuno/biosensors, Microchimica Acta, 169, 201–220.
  • [54] Prodromidis, M.I., (2010), Impedimetric immunosensors- a review, Electrochimica Acta, 55, 4227–4233.
  • [55] Ricci, F., Adornetto, G., and Palleschi, G., (2012), A review of experimental aspects of electrochemical immunosensors, Electrochimica Acta, 84, 74–83.
  • [56] Rassaei, L., Olthuis, W., Tsujimura, S., Sudhölter, E.J.R., and van den Berg, A., (2014), Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry, 406, 123–137.
  • [57] Ramanathan, K. and Danielsson, B., (2001), Principles and applications of thermal biosensors, Biosensors and Bioelectronics, 16, 417–423.
  • [58] Ibupoto, Z.H., Shah, S.M.U.A., Khun, K., and Willander, M., (2012), Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase, Sensors, 12, 2456–2466.
  • [59] Sun, C., Wang, D., Zhang, M., Ni, Y., Shen, X., Song, Y., Geng, Z., Xu, W., Liu, F., Mao, C., (2015), Novel l-lactic acid biosensors based on conducting polypyrrole-block copolymer nanoparticles. Analyst, 140, 797–802.
  • [60] Pérez, S., Sánchez, S., and Fàbregas, E., (2012), Enzymatic strategies to construct l-lactate biosensors based on polysulfone/carbon nanotubes membranes, Electroanalysis, 24, 967–974.
  • [61] Bekmezci, M., Bayat, R., Erduran, V., and Sen, F., (2022), Biofunctionalization of functionalized nanomaterials for electrochemical sensors, Functionalized Nanomaterial-Based Electrochemical Sensor, Principles, Fabrication Methods, and Applications, 55–69.
  • [62] Şavk, A., Aydın, H., Cellat, K., and Şen, F., (2020), A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite, Journal of Molecular Liquids, 300, 112355.
  • [63] Heineman, W.R., Anderson, C.W., and Halsall, H.B., (1979), Immunoassay by differential pulse polarography, Science. 204, 865–866.
  • [64] Ronkainen, N.J., Halsall, H.B., and Heineman, W.R., (2010), Electrochemical biosensors, Chemical Society Reviews, 39, 1747–1763.
  • [65] Wang, J., (2006), Electrochemical biosensors: towards point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21, 1887–1892.
  • [66] Dhull, V., Gahlaut, A., Dilbaghi, N., and Hooda, V., (2013), Acetylcholinesterase biosensors for electrochemical detection of organophosphorus compounds: a review, Biochemistry Research International, 1–18.
  • [67] Pizzariello, A., Stredanský, M., Stredanská, S., and Miertuš, S., (2001)., Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator, Talanta, 54, 763–772.
  • [68] Thévenot, D.R., Toth, K., Durst, R.A., and Wilson, G.S., (2001), Electrochemical biosensors: recommended definitions and classification, Biosensors and Bioelectronics, 16, 121–131.
  • [69] Buck, R.P. and Lindner, E., (1994), Recomendations for nomenclature of ion-selective electrodes (IUPAC recommendations), Pure and Applied Chemistry, 66, 2527–2536.
  • [70] Soldatkin, O. O., Kucherenko, I. S., Pyeshkova, V. M., Kukla, A. L., Jaffrezic-Renault, N., El'skaya, A. V., Dzyadevych, S. V., Soldatkin, A. P., (2012), Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry. 83, 25–30.
  • [71] Chen, C. and Wang, J., (2020), Optical biosensors: an exhaustive and comprehensive review, Analyst, 145, 1605–1628.
  • [72] Fan, X., White, I.M., Shopova, S.I., Zhu, H., Suter, J.D., and Sun, Y., (2008), Sensitive optical biosensors for unlabeled targets: A review, Analytica Chimica Acta, 620, 8–26.
  • [73] Velasco-Garcia, M.N., (2009), Optical biosensors for probing at the cellular level: A review of recent progress and future prospects, Seminars in Cell and Developmental Biology, 20, 27–33.
  • [74] Homola, J., Yee, S.S., and Myszka, D., (2008), Surface plasmon resonance bıosensors, Optical Biosensors, 185–242.
  • [75] Pohanka, M., (2018), Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications, Materials, 11, 448.
  • [76] Tothill, I.E., (2001), Biosensors developments and potential applications in the agricultural diagnosis sector. Computers and Electronics in Agriculture, 30, 205–218.
  • [77] Ozoglu, Ö., Unal L, M.A., and Gunes, E., (2017), Biyosensörler: gıda ve sağlık alanında laktat biyosensörleri, Turk Yasam Bilimleri Dergisi, 2, 180–193.
  • [78] Mello, L.D. and Kubota, L.T., (2002), Review of the use of biosensors as analytical tools in the food and drink industries, Food Chemistry, 77, 237–256.
  • [79] Marrazza, G., (2014), Piezoelectric biosensors for organophosphate and carbamate pesticides: A review, Biosensors, 4, 301–317.
  • [80] Yakovleva, M., Bhand, S., and Danielsson, B., (2013), The enzyme thermistor-a realistic biosensor concept. A critical review, Analytica Chimica Acta, 766 1–12.
  • [81] Oksuz, O., Sezginturk, M.K., (2013), Nabiltem personelinin enstrümental uzmanlıklarının iyilestirilmesinin ve laboratuvar bünyesinde gerçeklestirilen analiz hizmetlerinin kalitesinin ve güvenilirliğinin arttırılmasının arastırılması, J Conserv Dent, 16.
  • [82] Atar, H. and Colgecen, H., (2021), Gümüş nanopartiküllerinin biyosentezi ve biyosensör materyali olarak kullanımı, Commagene Journal of Biology, 5, 214-225.
  • [83] Singh, S., Kumar, V., Dhanjal, S., Datta, S., Prasad, R., Singh, J., Singh, S., Kumar, V., Dhanjal, D. S., Singh, J., Datta, S., Prasad, R., (2020), Biological biosensors for monitoring and diagnosis, SpringerLink, 317–335.
  • [84] Cengiz O., (2010), Temas açısı ölçüm cihazı tasarımı. Master Thesis, Graduate School of Natural and Applied Sciences, Istanbul Technical University, Istanbul, 83pp.
  • [85] Doğan, B. and Öztürk, M.M., (2019), Ni-Ti akıllı alaşım ince filmin sıcaklığa bağlı x-ray kırınımı ile karakterizasyonu ve faz dönüşümü tespiti, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 1-11.
  • [86] Ronkainen, N.J., Halsall, H.B., and Heineman, W.R., (2010), Electrochemical biosensors, Chemical Society Reviews, 39, 1747–1763.
  • [87] Sobhanie, E., Salehnia, F., Xu, G., Hamidipanah, Y., Arshian, S., Firoozbakhtian, A., Hosseini, M., Ganjali, M. R., Hanif, S., (2022), Recent trends and advancements in electrochemiluminescence biosensors for human virus detection, TrAC Trends in Analytical Chemistry, 157, 116727.
  • [88] Drobysh, M., Ramanaviciene, A., Viter, R., Chen, C. F., Samukaite-Bubniene, U., Ratautaite, V., Ramanavicius, A., (2022), Biosensors for the determination of sars-cov-2 virus and diagnosis of covıd-19 ınfection, International Journal of Molecular Sciences, 23, 666.
  • [89] Kaur, B., Kumar, S., and Kaushik, B.K., (2022), Recent advancements in optical biosensors for cancer detection, Biosensors and Bioelectronics, 197, 113805.
  • [90] Arikan, K., Burhan, H., Bayat, R., and Sen, F., (2022), Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT, Chemosphere, 291 132720.
  • [91] Wei, X., Yin, M., Zhang, L., Lin, H., Wang, J., Xie, W., Xu, D., (2022), Surface plasmon resonance (SPR) biosensor for detection of mycotoxins: A review, Journal of Immunological Methods, 510, 113349.
  • [92] Mi, F., Hu, C., Wang, Y., Wang, L., Peng, F., Geng, P. F., Guan, M, (2022), Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review, Analytical and Bioanalytical Chemistry, 414, 2883–2902.
  • [93] Azzouz, A., Hejji, L., Kim, K. H., Kukkar, D., Souhail, B., Bhardwaj, N., Brown, R. J.C., Zhang, W., (2022), Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection, Biosensors and Bioelectronics, 197, 113767.
  • [94] Mahmoudpour, M., Ezzati Nazhad Dolatabadi, J., Torbati, M., Pirpour Tazehkand, A., Homayouni-Rad, A., and de la Guardia, M., (2019), Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection, Biosensors and Bioelectronics, 143,111603.
  • [95] Ribeiro, S.C., Fernandes, R., Moreira, F.T.C., and Sales, M.G.F., (2022), Potentiometric biosensor based on artificial antibodies for an alzheimer biomarker detection. Applied Sciences, 12, 3625.
  • [96] Bankole, O.E., Verma, D.K., Chávez González, M.L., Ceferino, J.G., Sandoval-Cortés, J., and Aguilar, C.N., (2022), Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience, Food Bioscience, 47, 101695.
  • [97] Rossi, M.P., Ye, H., Gogotsi, Y., Babu, S., Ndungu, P., and Bradley, J.-C., (2004), Environmental scanning electron microscopy study of water in carbon nanopipes, Nano Letters, 4, 989–993.
  • [98] Donald, A.M., (2003), The use of environmental scanning electron microscopy for imaging wet and insulating materials, Nature Materials, 2, 511–516.
  • [99] Turkcan., C., (2021), Giyilebilir doku elektronigi, Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14, 27–34.
  • [100] Voss, A., Schroeder, R., Schulz, S., Haueisen, J., Vogler, S., Horn, P., Stallmach, A., Reuken, P., (2022), Detection of liver dysfunction using a wearable electronic nose system based on semiconductor metal oxide sensors, Biosensors, 12, 70.
  • [101] Kokbas, U., Kayrin, L., and Tuli, A., (2013), Biyosensörler ve tıpta kullanım alanları, Arşiv Kaynak Tarama Dergisi, 22, 499–513.
  • [102]Çelebier, İ., (2022), Kanser tanısında kullanılmak üzere yeni nesil kolorimetrik biyosensörlerin geliştirilmesi, PhD Thesis, Department of Biology, Hacettepe University, Ankara, 95pp.
  • [103]Tuylek, Z., (2017), Biyosensörler ve nanoteknolojik etkileşim, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6, 71–80.
  • [104]Tuylek, Z, (2021), Biyolojik sistemlerde gelecekteki nano / biyosensör ürünlerine hazırlık, Biyosistem Mühendisliği Dergisi, 17–39.
  • [105]Yüksel, M., (2012), Protein algılamasına yönelik nano-biyosensörlerin yeni malzeme ve tekniklerle geliştirilmesi, PhD Thesis, Graduate School of Natural and Applied Sciences, Department of Physics, Kırıkkale University, Kırakkale, 82pp.
  • [106] Tuylek, Z., (2019), Nanotıp alanında kullanılan sistemler, Arşiv Kaynak Tarama Dergisi, 119–129.
  • [107] Karakaş, T.B., (2021), Biosensors designed for rapid detection of sars-cov-2, Dergipark, 4, 491–506.
  • [108]Göktürk, I., (2018), Nanobiyosensörler: hastalık teşhisi için gelecek vaat ediyor mu? Bioreg Bilim, 34–40.
  • [109]Tüylek, Z., (2021), Nano-medicine and the new treatment methods, Review Article, Eurasıan Journal Of Health Scıences, 4, 121–131.
  • [110] Abid, S. A., Ahmed Muneer, A., Al-Kadmy, I. M.S., Sattar, A. A., Beshbishy, A.M., Batiha, G.E.S., Hetta, H.F., (2021), Biosensors as a future diagnostic approach for COVID-19. Life Sciences, 273 119117.
  • [111] Ma, Z., Meliana, C., Munawaroh, H. S. H., Karaman, C., Karimi-Maleh, H., Low, S. S., Show, P. L., (2022), Recent advances in the analytical strategies of microbial biosensor for detection of pollutants, Chemosphere, 306, 135515.
  • [112]Dzyadevych, S. v., Arkhypova, V.N., Soldatkin, A.P., El’skaya, A. v., Martelet, C., and Jaffrezic-Renault, N., (2008), Amperometric enzyme biosensors: past, present and future, IRBM. 29, 171–180.
There are 102 citations in total.

Details

Primary Language English
Journal Section Review
Authors

Aleyna Gundogdu 0000-0003-3045-9181

Gizem Gazoglu 0000-0002-0335-1792

Elif Kahraman 0000-0003-1304-4638

Esma Yildiz 0000-0002-7326-781X

Gizem Candir 0000-0002-6231-7922

Duygu Yalcin 0000-0003-3978-0668

Atakan Koç 0000-0001-5159-1398

Fatih Şen 0000-0001-6843-9026

Publication Date March 29, 2023
Submission Date December 20, 2022
Published in Issue Year 2023 Issue: 052

Cite

IEEE A. Gundogdu, G. Gazoglu, E. Kahraman, E. Yildiz, G. Candir, D. Yalcin, A. Koç, and F. Şen, “BIOSENSORS: TYPES, APPLICATIONS, AND FUTURE ADVANTAGES”, JSR-A, no. 052, pp. 457–481, March 2023, doi: 10.59313/jsr-a.1221899.