FACILE AND CONTROLLED SYNTHESIS OF 2D ORGANOMETAL HALIDE PEROVSKITE PURE BA2MAPb2I7 AND HETEROSTRUCTURED BA2PbI4/BA2MAPb2I7 SINGLE CRYSTALS
Year 2023,
Issue: 052, 234 - 246, 29.03.2023
Alp Yılmaz
,
Aydan Yeltik
Abstract
Two dimensional (2D) organometal halide perovskites (OHPs) have attracted intensive interest for their diverse optoelectronic applications. However, a practical and controllable solution-based way particularly for the synthesis of pure BA2MAPb2I7 and heterostructured BA2PbI4/BA2MAPb2I7 single crystals, which are of great importance for high performance photodetectors, is still lacking. In this study, we report the efficient synthesis route of large-area high-quality BA2MAPb2I7 and BA2PbI4/BA2MAPb2I7 single crystals. We show that the combined method of solution temperature lowering and limiting reagent approaches yields rapid and controllable synthesis. In addition, the correct determination of the BAI:MAI:PbI2 molarity ratios in the synthesis process was revealed to be highly significant. These results provide fundamental insight and useful guideline for obtaining the presented 2D OHPs with regard to high practicality and controllability.
Supporting Institution
Scientific and Technological Research Council of Turkey
Project Number
TÜBİTAK 121M601
Thanks
This work was supported by Scientific and Technological Research Council of Turkey. Project Number: TÜBİTAK 121M601.
References
- [1] Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A., (2020), Graphene research and their outputs: status and prospect, Journal of Science: Advanced Materials and Devices, 5, 10–29.
- [2] Aras, F.G., Yilmaz, A., Tasdelen, H.G., Ozden, A., Ay, F., Perkgoz, N.K. and Yeltik, A., (2022), A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te), Materials Science in Semiconductor Processing, 148, 106829.
- [3] Aras, F.G., Avad, J. and Yeltik, A., (2022), Glass‐Assisted Chemical Vapor Deposition‐Grown Monolayer MoS2 : Effective Control of Size Distribution via Surface Patterning, Physica Status Solidi (A), 219, 2200503.
- [4] Aras, F.G. and Yeltik, A., (2022), Role of gas flow direction on monolayer MoS2 growth on patterned surfaces via CVD, Semiconductor Science and Technology, 38, 015013.
- [5] Hong, K., Le, Q. Van, Kim, S.Y. and Jang, H.W., (2018), Low-dimensional halide perovskites: review and issues, Journal of Materials Chemistry C, 6, 2189–2209.
- [6] Quan, L.N., Rand, B.P., Friend, R.H., Mhaisalkar, S.G., Lee, T.-W. and Sargent, E.H., (2019), Perovskites for next-generation optical sources, Chemical Reviews, 119, 7444–7477.
- [7] Chen, Y., Sun, Y., Peng, J., Tang, J., Zheng, K. and Liang, Z., (2018), 2D ruddlesden-popper perovskites for optoelectronics, Advanced Materials, 30, 1703487.
- [8] Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D. and Karunadasa, H.I., (2014), A layered hybrid perovskite solar-cell absorber with enhanced moisture stability, Angewandte Chemie International Edition, 53, 11232–11235.
- [9] Cao, D.H., Stoumpos, C.C., Farha, O.K., Hupp, J.T. and Kanatzidis, M.G., (2015), 2D homologous perovskites as light absorbing materials for solar cell applications, Journal of the American Chemical Society, 137, 7843–7850.
- [10] He, J., Fang, W.-H. and Long, R., (2020), Two-dimensional perovskite capping layer simultaneously improves the charge carriers lifetime and stability of MAPbI3 perovskite: a time domain ab initio study, The Journal of Physical Chemistry Letters, 11, 5100–5107.
- [11] Krishna, A., Gottis, S., Nazeeruddin, M.K. and Sauvage, F., (2019), Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells?, Advanced Functional Materials, 29, 1806482.
- [12] Zhang, Y., Lyu, M., Qiu, T., Han, E., Kim, I.K., Jung, M.-C., Ng, Y.H., Yun, J.-H. and Wang, L., (2020), Halide perovskite single crystals: optoelectronic applications and strategical approaches, Energies, 13, 4250.
- [13] Trivedi, S., Prochowicz, D., Parikh, N., Mahapatra, A., Pandey, M.K., Kalam, A., Tavakoli, M.M. and Yadav, P., (2021), Recent progress in growth of single-crystal perovskites for photovoltaic applications, ACS Omega, 6, 1030–1042.
- [14] Pham, P. V., Bodepudi, S.C., Shehzad, K., Liu, Y., Xu, Y., Yu, B. and Duan, X., (2022), 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges, Chemical Reviews, 122, 6514–6613.
- [15] Wang, J., Li, J., Lan, S., Fang, C., Shen, H., Xiong, Q. and Li, D., (2019), Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors, ACS Nano, 13, 5473–5484.
- [16] Cheng, X., Han, Y. and Cui, B., (2022), Fabrication strategies and optoelectronic applications of perovskite heterostructures, Advanced Optical Materials, 10, 2102224.
- [17] Cao, F., Li, Z., Liu, X., Shi, Z. and Fang, X., (2022), Air induced formation of Cs3Bi2Br9/Cs3BiBr6 bulk heterojunction and its dual‐band photodetection abilities for light communication, Advanced Functional Materials, 32, 2206151.
- [18] Hwang, B. and Lee, J., (2019), 2D perovskite based self‐aligned lateral heterostructure photodetectors utilizing vapor deposition, Advanced Optical Materials, 7, 1801356.
- [19] Wang, J., Li, J., Tan, Q., Li, L., Zhang, J., Zang, J., Tan, P., Zhang, J. and Li, D., (2017), Controllable synthesis of two-dimensional ruddlesden–popper type perovskite heterostructures, The Journal of Physical Chemistry Letters, 8, 6211–6219.
- [20] Li, J., Han, Z., Gu, Y., Yu, D., Liu, J., Hu, D., Xu, X. and Zeng, H., (2021), Perovskite single crystals: synthesis, optoelectronic properties, and application, Advanced Functional Materials, 31, 2008684.
- [21] Liu, J., Xue, Y., Wang, Z., Xu, Z.-Q., Zheng, C., Weber, B., Song, J., Wang, Y., Lu, Y., Zhang, Y. and Bao, Q., (2016), Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application, ACS Nano, 10, 3536–3542.
- [22] Protesescu, L., Yakunin, S., Nazarenko, O., Dirin, D.N. and Kovalenko, M. V., (2018), Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling, ACS Applied Nano Materials, 1, 1300–1308.
- [23] Zhu, T. and Gong, X., (2021), Low‐dimensional perovskite materials and their optoelectronics, InfoMat, 3, 1039–1069.
- [24] Poglitsch, A. and Weber, D., (1987), Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy, The Journal of Chemical Physics, 87, 6373–6378.
- [25] Raghavan, C.M., Chen, T.-P., Li, S.-S., Chen, W.-L., Lo, C.-Y., Liao, Y.-M., Haider, G., Lin, C.-C., Chen, C.-C., Sankar, R., Chang, Y.-M., Chou, F.-C. and Chen, C.-W., (2018), Low-threshold lasing from 2D homologous organic–inorganic hybrid ruddlesden–popper perovskite single crystals, Nano Letters, 18, 3221–3228.
- [26] Stoumpos, C.C., Cao, D.H., Clark, D.J., Young, J., Rondinelli, J.M., Jang, J.I., Hupp, J.T. and Kanatzidis, M.G., (2016), Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors, Chemistry of Materials, 28, 2852–2867.
- [27] Wang, K., Wu, C., Yang, D., Jiang, Y. and Priya, S., (2018), Quasi-two-dimensional halide perovskite single crystal photodetector, ACS Nano, 12, 4919–4929.
- [28] Klein-Kedem, N., Cahen, D. and Hodes, G., (2016), Effects of light and electron beam irradiation on halide perovskites and their solar cells, Accounts of Chemical Research, 49, 347–354.
- [29] Xiao, C., Li, Z., Guthrey, H., Moseley, J., Yang, Y., Wozny, S., Moutinho, H., To, B., Berry, J.J., Gorman, B., Yan, Y., Zhu, K. and Al-Jassim, M., (2015), Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy, The Journal of Physical Chemistry C, 119, 26904–26911.
- [30] Kim, T.W., Shibayama, N., Cojocaru, L., Uchida, S., Kondo, T. and Segawa, H., (2018), Real-time in situ observation of microstructural change in organometal halide perovskite induced by thermal degradation, Advanced Functional Materials, 28, 1804039.
- [31] Ran, J., Dyck, O., Wang, X., Yang, B., Geohegan, D.B. and Xiao, K., (2020), Electron beam related studies of halide perovskites: challenges and opportunities, Advanced Energy Materials, 10, 1903191.
- [32] Rothmann, M.U., Li, W., Zhu, Y., Liu, A., Ku, Z., Bach, U., Etheridge, J. and Cheng, Y., (2018), Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams, Advanced Materials, 30, 1800629.
- [33] Zhou, J., Chu, Y. and Huang, J., (2016), Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors, ACS Applied Materials & Interfaces, 8, 25660–25666.
- [34] Xu, Y., Li, Y., Wang, Q., Chen, H., Lei, Y., Feng, X., Ci, Z. and Jin, Z., (2022), Two-dimensional BA2PbBr4-based wafer for X-rays imaging application, Materials Chemistry Frontiers, 6, 1310–1316.
- [35] Lin, J., Chen, D., Wu, C., Hsu, C., Chien, C., Chen, H., Chou, P. and Chiu, C., (2021), A universal approach for controllable synthesis of n‐specific layered 2D perovskite nanoplates, Angewandte Chemie International Edition, 60, 7866–7872.
- [36] Choi, E., Zhang, Y., Soufiani, A.M., Lee, M., Webster, R.F., Pollard, M.E., Reece, P.J., Lee, W., Seidel, J., Lim, J., Yun, J.-H. and Yun, J.S., (2022), Exploration of sub-bandgap states in 2D halide perovskite single-crystal photodetector, Npj 2D Materials and Applications, 6, 43.
- [37] Miao, Y., Xiao, Z., Zheng, Z., Lyu, D., Liu, Q., Wu, J., Wu, Y., Wen, X., Shui, L., Hu, X., Wang, K., Tang, Z. and Jiang, X., (2022), Designable layer edge states in quasi‐2D perovskites induced by femtosecond pulse laser, Advanced Science, 9, 2201046.
- [38] Du, Q., Zhu, C., Yin, Z., Na, G., Cheng, C., Han, Y., Liu, N., Niu, X., Zhou, H., Chen, H., Zhang, L., Jin, S. and Chen, Q., (2020), Stacking effects on electron–phonon coupling in layered hybrid perovskites via microstrain manipulation, ACS Nano, 14, 5806–5817.
Year 2023,
Issue: 052, 234 - 246, 29.03.2023
Alp Yılmaz
,
Aydan Yeltik
Project Number
TÜBİTAK 121M601
References
- [1] Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A., (2020), Graphene research and their outputs: status and prospect, Journal of Science: Advanced Materials and Devices, 5, 10–29.
- [2] Aras, F.G., Yilmaz, A., Tasdelen, H.G., Ozden, A., Ay, F., Perkgoz, N.K. and Yeltik, A., (2022), A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te), Materials Science in Semiconductor Processing, 148, 106829.
- [3] Aras, F.G., Avad, J. and Yeltik, A., (2022), Glass‐Assisted Chemical Vapor Deposition‐Grown Monolayer MoS2 : Effective Control of Size Distribution via Surface Patterning, Physica Status Solidi (A), 219, 2200503.
- [4] Aras, F.G. and Yeltik, A., (2022), Role of gas flow direction on monolayer MoS2 growth on patterned surfaces via CVD, Semiconductor Science and Technology, 38, 015013.
- [5] Hong, K., Le, Q. Van, Kim, S.Y. and Jang, H.W., (2018), Low-dimensional halide perovskites: review and issues, Journal of Materials Chemistry C, 6, 2189–2209.
- [6] Quan, L.N., Rand, B.P., Friend, R.H., Mhaisalkar, S.G., Lee, T.-W. and Sargent, E.H., (2019), Perovskites for next-generation optical sources, Chemical Reviews, 119, 7444–7477.
- [7] Chen, Y., Sun, Y., Peng, J., Tang, J., Zheng, K. and Liang, Z., (2018), 2D ruddlesden-popper perovskites for optoelectronics, Advanced Materials, 30, 1703487.
- [8] Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D. and Karunadasa, H.I., (2014), A layered hybrid perovskite solar-cell absorber with enhanced moisture stability, Angewandte Chemie International Edition, 53, 11232–11235.
- [9] Cao, D.H., Stoumpos, C.C., Farha, O.K., Hupp, J.T. and Kanatzidis, M.G., (2015), 2D homologous perovskites as light absorbing materials for solar cell applications, Journal of the American Chemical Society, 137, 7843–7850.
- [10] He, J., Fang, W.-H. and Long, R., (2020), Two-dimensional perovskite capping layer simultaneously improves the charge carriers lifetime and stability of MAPbI3 perovskite: a time domain ab initio study, The Journal of Physical Chemistry Letters, 11, 5100–5107.
- [11] Krishna, A., Gottis, S., Nazeeruddin, M.K. and Sauvage, F., (2019), Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells?, Advanced Functional Materials, 29, 1806482.
- [12] Zhang, Y., Lyu, M., Qiu, T., Han, E., Kim, I.K., Jung, M.-C., Ng, Y.H., Yun, J.-H. and Wang, L., (2020), Halide perovskite single crystals: optoelectronic applications and strategical approaches, Energies, 13, 4250.
- [13] Trivedi, S., Prochowicz, D., Parikh, N., Mahapatra, A., Pandey, M.K., Kalam, A., Tavakoli, M.M. and Yadav, P., (2021), Recent progress in growth of single-crystal perovskites for photovoltaic applications, ACS Omega, 6, 1030–1042.
- [14] Pham, P. V., Bodepudi, S.C., Shehzad, K., Liu, Y., Xu, Y., Yu, B. and Duan, X., (2022), 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges, Chemical Reviews, 122, 6514–6613.
- [15] Wang, J., Li, J., Lan, S., Fang, C., Shen, H., Xiong, Q. and Li, D., (2019), Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors, ACS Nano, 13, 5473–5484.
- [16] Cheng, X., Han, Y. and Cui, B., (2022), Fabrication strategies and optoelectronic applications of perovskite heterostructures, Advanced Optical Materials, 10, 2102224.
- [17] Cao, F., Li, Z., Liu, X., Shi, Z. and Fang, X., (2022), Air induced formation of Cs3Bi2Br9/Cs3BiBr6 bulk heterojunction and its dual‐band photodetection abilities for light communication, Advanced Functional Materials, 32, 2206151.
- [18] Hwang, B. and Lee, J., (2019), 2D perovskite based self‐aligned lateral heterostructure photodetectors utilizing vapor deposition, Advanced Optical Materials, 7, 1801356.
- [19] Wang, J., Li, J., Tan, Q., Li, L., Zhang, J., Zang, J., Tan, P., Zhang, J. and Li, D., (2017), Controllable synthesis of two-dimensional ruddlesden–popper type perovskite heterostructures, The Journal of Physical Chemistry Letters, 8, 6211–6219.
- [20] Li, J., Han, Z., Gu, Y., Yu, D., Liu, J., Hu, D., Xu, X. and Zeng, H., (2021), Perovskite single crystals: synthesis, optoelectronic properties, and application, Advanced Functional Materials, 31, 2008684.
- [21] Liu, J., Xue, Y., Wang, Z., Xu, Z.-Q., Zheng, C., Weber, B., Song, J., Wang, Y., Lu, Y., Zhang, Y. and Bao, Q., (2016), Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application, ACS Nano, 10, 3536–3542.
- [22] Protesescu, L., Yakunin, S., Nazarenko, O., Dirin, D.N. and Kovalenko, M. V., (2018), Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling, ACS Applied Nano Materials, 1, 1300–1308.
- [23] Zhu, T. and Gong, X., (2021), Low‐dimensional perovskite materials and their optoelectronics, InfoMat, 3, 1039–1069.
- [24] Poglitsch, A. and Weber, D., (1987), Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy, The Journal of Chemical Physics, 87, 6373–6378.
- [25] Raghavan, C.M., Chen, T.-P., Li, S.-S., Chen, W.-L., Lo, C.-Y., Liao, Y.-M., Haider, G., Lin, C.-C., Chen, C.-C., Sankar, R., Chang, Y.-M., Chou, F.-C. and Chen, C.-W., (2018), Low-threshold lasing from 2D homologous organic–inorganic hybrid ruddlesden–popper perovskite single crystals, Nano Letters, 18, 3221–3228.
- [26] Stoumpos, C.C., Cao, D.H., Clark, D.J., Young, J., Rondinelli, J.M., Jang, J.I., Hupp, J.T. and Kanatzidis, M.G., (2016), Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors, Chemistry of Materials, 28, 2852–2867.
- [27] Wang, K., Wu, C., Yang, D., Jiang, Y. and Priya, S., (2018), Quasi-two-dimensional halide perovskite single crystal photodetector, ACS Nano, 12, 4919–4929.
- [28] Klein-Kedem, N., Cahen, D. and Hodes, G., (2016), Effects of light and electron beam irradiation on halide perovskites and their solar cells, Accounts of Chemical Research, 49, 347–354.
- [29] Xiao, C., Li, Z., Guthrey, H., Moseley, J., Yang, Y., Wozny, S., Moutinho, H., To, B., Berry, J.J., Gorman, B., Yan, Y., Zhu, K. and Al-Jassim, M., (2015), Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy, The Journal of Physical Chemistry C, 119, 26904–26911.
- [30] Kim, T.W., Shibayama, N., Cojocaru, L., Uchida, S., Kondo, T. and Segawa, H., (2018), Real-time in situ observation of microstructural change in organometal halide perovskite induced by thermal degradation, Advanced Functional Materials, 28, 1804039.
- [31] Ran, J., Dyck, O., Wang, X., Yang, B., Geohegan, D.B. and Xiao, K., (2020), Electron beam related studies of halide perovskites: challenges and opportunities, Advanced Energy Materials, 10, 1903191.
- [32] Rothmann, M.U., Li, W., Zhu, Y., Liu, A., Ku, Z., Bach, U., Etheridge, J. and Cheng, Y., (2018), Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams, Advanced Materials, 30, 1800629.
- [33] Zhou, J., Chu, Y. and Huang, J., (2016), Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors, ACS Applied Materials & Interfaces, 8, 25660–25666.
- [34] Xu, Y., Li, Y., Wang, Q., Chen, H., Lei, Y., Feng, X., Ci, Z. and Jin, Z., (2022), Two-dimensional BA2PbBr4-based wafer for X-rays imaging application, Materials Chemistry Frontiers, 6, 1310–1316.
- [35] Lin, J., Chen, D., Wu, C., Hsu, C., Chien, C., Chen, H., Chou, P. and Chiu, C., (2021), A universal approach for controllable synthesis of n‐specific layered 2D perovskite nanoplates, Angewandte Chemie International Edition, 60, 7866–7872.
- [36] Choi, E., Zhang, Y., Soufiani, A.M., Lee, M., Webster, R.F., Pollard, M.E., Reece, P.J., Lee, W., Seidel, J., Lim, J., Yun, J.-H. and Yun, J.S., (2022), Exploration of sub-bandgap states in 2D halide perovskite single-crystal photodetector, Npj 2D Materials and Applications, 6, 43.
- [37] Miao, Y., Xiao, Z., Zheng, Z., Lyu, D., Liu, Q., Wu, J., Wu, Y., Wen, X., Shui, L., Hu, X., Wang, K., Tang, Z. and Jiang, X., (2022), Designable layer edge states in quasi‐2D perovskites induced by femtosecond pulse laser, Advanced Science, 9, 2201046.
- [38] Du, Q., Zhu, C., Yin, Z., Na, G., Cheng, C., Han, Y., Liu, N., Niu, X., Zhou, H., Chen, H., Zhang, L., Jin, S. and Chen, Q., (2020), Stacking effects on electron–phonon coupling in layered hybrid perovskites via microstrain manipulation, ACS Nano, 14, 5806–5817.