Research Article
BibTex RIS Cite

Determination of the species boundaries of genus Dolerus (Hymenoptera: Tenthredinidae) using the COI gene

Year 2024, Issue: 056, 23 - 35, 31.03.2024
https://doi.org/10.59313/jsr-a.1380672

Abstract

New generation molecular approaches and methods are being developed to identify species and determine species boundaries. There are many different approaches of species delimitation used to assess the species richness of poorly studied and highly diverse invertebrate taxa. The basis of these approach is DNA barcoding studies. DNA barcoding has been used as a powerful tool for species identification and delimitation. Although DNA barcoding studies have been carried out on the family Tenthredinidae, there are no studies on species delimitation. Herein, we compare species delimitation analyzes belong to Dolerus genus based on cytochrome c oxidase I (COI) region. In this context, it was used five species delimitation approaches (ABGD, ASAP, DNA Taxon, PTP and GMYC). Thirty-six morphotypes were used in the study. These morphotypes separated into six species (Dolerus triplicatus, Dolerus germanicus, Dolerus puncticollis, Dolerus nigratus, Dolerus sp1 and Dolerus sp2) in ABGD, ASAP and DNA Taxon approaches. Two additional species were introduced because of the tree-based PTP and GMYC approaches. These species were named as Dolerus sp3 and Dolerus sp4 which were separated from Dolerus puncticollis clade and Dolerus nigratus clade, respectively. These analyzes were supported by the phylogenetic tree and CBC entities that constitute the ITS2 data.

Supporting Institution

Tübitak 113Z753

Project Number

Tübitak 113Z753

References

  • [1] E. M. Viitasaari, “Sawflies I. A review of the suborder, the Western Palae- arctic taxa of Xyeloidea and Pamphilioidea”, Tremex Press, Helsinki, pp. 516, 2002.
  • [2] A. P. Aguiar et al., “Order Hymenoptera. In: Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness”, Zootaxa, vol. 3703, no. 1, pp. 51-65, 2013, doi: https://doi.org/10.11646/zootaxa.3703.1.12.
  • [3] G. Niu et al., “Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily”, Insects, vol. 12, pp. 495, 2021, doi: https://doi.org/10.3390/insects12060495.
  • [4] I. D. Gauld and B. Bolton, “The Hymenoptera”, Oxford University Press, Oxford, 1988.
  • [5] D. A. Grimaldi and M. S. Engel, “Evolution of the Insects”, Cambridge University Press, New York, 2005.
  • [6] S. Schmidt et al., “Identification of sawflies and horntails (Hymenoptera,‘Symphyta’) through DNA barcodes: Successes and Caveats”, Molecular Ecology Resources, vol. 17, no. 4, pp. 670-685, 2017, doi: https://doi.org/10.1111/1755-0998.12614.
  • [7] A. Taeger et al., “ECatSym. Electronic World Catalog of Symphyta (Insecta, Hymenoptera)”, Program version 5.0 (19 Dec 2018), data version 40 (23 Sep 2018). Senckenberg Deutsches Entomologisches Institut (SDEI), Müncheberg. (Web page: https://sdei.de/ecatsym/) (Date accessed: 21 May 2019)
  • [8] A. M. Barker, “The dentification of larvae of eight graminivorous species of the sawfly genus Dolerus Panzer 1801 (Hymenoptera: Tenthredinidae) regularly found in grass and cereal fields in southern England”, Journal of Natural History, vol. 32, no. 8, pp. 1181-1215, 1998.
  • [9] J. Borowski, “Materials to the knowledge of Polish sawflies. The genus Dolerus Panzer, 1801 (Hymenoptera, Symphyta, Tenthredinidae, Selandriinae). Part XVIII ̶ Dolerus (Achaetoprion) pachycerus Hartig, 1837 with observations on its biology and a key for identification of larvae of subgenus Achaetoprion Goulet, 1986”, Polish Journal of Entomology, vol. 92, pp. 1-6, 2023, doi: 10.5604/01.3001.0053.3993.
  • [10] M. D. Schwarzfeld and F. A. H. Sperling, “Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae)”, ZooKeys, vol. 462, pp. 59–114, 2014, doi: 10.3897/zookeys.462.8229.
  • [11] J. T. Longino, and M. G. Branstetter, “Phylogenomic species delimitation, taxonomy, and ‘bird guide’ identification for the Neotropical ant genus Rasopone (Hymenoptera: Formicidae)”, Insect Systematics and Diversity, vol. 4, no. 2, pp. 1, 2020, doi: https://doi.org/10.1093/isd/ixaa004.
  • [12] C. Waichert, J. S. Wilson, J. P. Pitts and C. D. V. Dohlen, “Phylogenetic species delimitation for the widespread spider wasp Ageniella accepta (Hymenoptera: Pompilidae), with new synonyms”, Insect Systematics and Evolution, vol. 51, no. 3, pp. 532-549, 2020, doi: https://doi.org/10.1163/1876312X-00002207.
  • [13] Z. Liu et al., “Tackling the Taxonomic Challenges in the Family Scoliidae (Insecta, Hymenoptera) Using an Integrative Approach: A Case Study from Southern China”, Insects, vol. 12, no. 10, pp. 892, 2021, doi: https://doi.org/10.3390/insects12100892.
  • [14] M. M. Prebus, “Phylogenomic species delimitation in the ants of the Temnothorax salvini group (Hymenoptera: Formicidae): an integrative approach”, Systematic Entomology, vol. 46, no. 2, pp. 307-326, 2021, doi: https://doi.org/10.1111/syen.12463.
  • [15] P. C. S. Barroso, R. S. T. Menezes, M. L. de Oliveira, and A. Somavilla, “A systematic review of the Neotropical social wasp genus Angiopolybia Araujo, 1946 (Hymenoptera: Vespidae): species delimitation, morphological diagnosis, and geographical distribution”, Arthropod Systematics and Phylogeny, vol. 80, pp. 75-97, 2022, doi: 10.3897/asp.80.e71492.
  • [16] A. Somavilla, M. L. D. Oliveira, R. S. Menezes and P. C. S. Barroso, “A systematic review of the Neotropical social wasp genus Angiopolybia Araujo, 1946 (Hymenoptera: Vespidae): species delimitation, morphological diagnosis, and geographical distribution”, Arthropod Systematics and Phylogeny, vol. 80, pp. 75-97, 2022, doi: 10.3897/asp.80.e71492.
  • [17] S. Shimizu and K. Maeto, “A New Distinctive Darwin Wasp Represents the First Record of the Ophion minutus Species-group (Hymenoptera: Ichneumonidae: Ophioninae) from Japan and the Far East, with an Analysis of DNA Barcode-based Species Delimitation in Ophion”. Zoological Studies, vol 62, 2023, doi: 10.6620/ZS.2023.62-27.
  • [18] S. Schulmeister, “Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis”, Biological Journal of the Linnean Society, vol. 79, no. 2, pp. 245-275, 2023, doi: https://doi.org/10.1046/j.1095-8312.2003.00233.x.
  • [19] M. Prous, M. Heidemaa, S. Akihiko and V. Soon, “Review of the sawfly genus Empria (Hymenoptera, Tenthredinidae) in Japan”, ZooKeys, vol. 150, pp. 347-380, 2011, doi: 10.3897/zookeys.150.1968.
  • [20] S. A. Leppänen, E. Altenhofer, A. D. Liston and T. Nyman, “Phylogenetics and evolution of host-plant use in leaf mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae)”, Molecular Phylogenetics and Evolution, vol. 64, no. 2, pp. 331-341, 2012, doi: https://doi.org/10.1016/j.ympev.2012.04.005.
  • [21] Y. Isaka and T. Sato, “Molecular phylogenetic and divergence time estimation analyzes of the sawfly subfamily Selandriinae (Hymenoptera: Tenthredinidae)”, Entomological Science, vol. 17, no. 4, pp. 435-439, 2014, doi: https://doi.org/10.1111/ens.12080.
  • [22] T. Malm and T. Nyman, “Phylogeny of the Symphytan grade of Hymenoptera: new pieces into the old jigsaw (fly) puzzle”, Cladistics, vol. 31, no. 1, pp. 1-17, 2015, doi: https://doi.org/10.1111/cla.12069.
  • [23] L. Vilhelmsen, “Morphological phylogenetics of the Tenthredinidae (Insecta: Hymenoptera)”, Invertebrate Systematics, vol. 29, no. 2, pp. 164-190, 2015, doi: http://dx.doi.org/10.1071/IS14056.
  • [24] M. Budak, M. Güler, E. M. Korkmaz, S. H. Örgen and H. H. Başıbüyük, “The characterization and taxonomic utility of ITS2 in Tenthredopsis Costa, 1859 (Tenthredinidae: Hymenoptera) with some new records from Turkey”, Biochemical Systematics and Ecology, vol. 66, pp. 76-85, 2016, doi: https://doi.org/10.1016/j.bse.2016.03.008.
  • [25] M. Gülmez, M. Budak, E. M. Korkmaz, S. H. Örgen and H. H. Başibüyük, “Characterization and taxonomic utility of ITS2 in Dolerus Panzer, 1801 (Hymenoptera: Tenthredinidae)”, Turkish Journal of Entomology, vol. 46, no. 1, pp. 13-23, 2022, doi: http://dx.doi.org/10.16970/entoted.1018061.
  • [26] J. W. Sites Jr and J. C. Marshall, “Delimiting species: a Renaissance issue in systematic biology”, Trends in Ecology and Evolution, vol. 18, no. 9, pp. 462-470, 2003, doi: ttps://doi.org/10.1016/S0169-5347(03)00184-8.
  • [27] A.D. Roe and F. A. Sperling, “Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding”, Molecular Phylogenetics and Evolution, vol. 44, no. 1, pp. 325-345, 2007, doi: https://doi.org/10.1016/j.ympev.2006.12.005.
  • [28] M. D. Schwarzfeld and F. A. Sperling, “Comparison of five methods for delimitating species in Ophion Fabricius, a diverse genus of parasitoid wasps (Hymenoptera, Ichneumonidae)”, Molecular Phylogenetics and Evolution, vol. 93, pp. 234-248, 2005, doi: https://doi.org/10.1016/j.ympev.2015.08.003.
  • [29] P. N. D. Hebert and T. R. Gregory, “The promise of DNA barcoding for taxonomy”, Systematic Biology, vol. 54, pp. 852–859, 2005, doi: https://doi.org/10.1080/10635150500354886.
  • [30] A. Valentini, F. Pompanon and P. P. Taberlet, “DNA barcoding for ecologists”, Trends in Ecology and Evolution, vol. 24, pp. 110–117, 2009, doi: https://doi.org/10.1016/j.tree.2008.09.011.
  • [31] P. Z. Goldstein and R. DeSalle, “Integrating DNA barcode data and taxonomic practice: determination, discovery, and description”, Bioessays, vol. 33, pp.135–147, 2011, doi: https://doi.org/10.1002/bies.201000036.
  • [32] M. S. Caterino, S. Cho and F. A. H. Sperling, “E current state of insect molecular systematics: a thriving tower of babel”, Annual Review of Entomology, vol. 45, no. 1, pp. 1–54, 2000, doi: https://doi.org/10.1146/annurev.ento.45.1.1.
  • [33] P. D. N. Hebert, A, Cywinska, S. L. Ball and J. R. deWaard. “Biological identifications through DNA barcodes”, Proceedings of the Royal Society B. Biological Sciences, vol. 270, pp. 313–321, 2003a, doi: https://doi.org/10.1098/rspb.2002.2218.
  • [34] C. R. Bonvicino, B. Lemos and H. N. Seuánez, “Molecular phylogenetics of howler monkeys (Alouatta, Platyrrhini) A comparison with karyotypic data”, Chromosoma, vol. 110, pp. 241–246, 2001, doi: https://doi.org/10.1007/s004120000128.
  • [35] F. F. Nascimento, C. R. Bonvicino, and H. N. Seuánez, “Population genetic studies of Alouatta caraya (Alouattinae, Primates): inferences on geographic distribution and ecology”, Am J Primatol, vol. 69, pp. 1093–1102, 2007, doi: https://doi.org/10.1002/ajp.20423.
  • [36] N. Puillandre, A, Lambert, S. Brouillet and G. Achaz, “ABGD, Automatic Barcode Gap Discovery for primary species delimitation”, Molecular Ecology, vol. 21, pp. 1864-1877, 2012, doi: https://doi.org/10.1111/j.1365-294X.2011.05239.x.
  • [37] A. Zaldívar-Riverón et al., “DNA barcoding a highly diverse group of parasitoid wasps (Braconidae: Doryctinae) from a Mexican nature reserve”, Mitochondrial DNA, vol. 21, no. sup1, pp. 18-23, 2007, doi: https://doi.org/10.3109/19401736.2010.523701.
  • [38] E. P. Fagan‐Jeffries, S. J. Cooper, T. Bertozzi, T. M. Bradford and A. D. Austin, “DNA barcoding of microgastrine parasitoid wasps (Hymenoptera: Braconidae) using high‐throughput methods more than doubles the number of species known for Australia”, Molecular Ecology Resources, vol. 18, no. 5, pp. 1132-1143, 2018, doi: https://doi.org/10.1111/1755-0998.12904.
  • [39] S. K. Oberprieler, A. N. Andersen and C. C. Moritz, “Ants in Australia’s monsoonal tropics: CO1 barcoding reveals extensive unrecognised diversity”, Diversity, vol. 10, no. 2, pp. 36, 2018, doi: https://doi.org/10.3390/d10020036.
  • [40] B. A. Parslow, M. P. Schwarz and M. I. Stevens, “Review of the biology and host associations of the wasp genus Gasteruption (Evanioidea: Gasteruptiidae)”, Zoological Journal of the Linnean Society, vol. 189, no. 4, pp. 1105-1122, 2020, doi: https://doi.org/10.1093/zoolinnean/zlaa005.
  • [41] B. A. Parslow, M. P. Schwarz, and M. I. Stevens, “Molecular diversity and species delimitation in the family Gasteruptiidae (Hymenoptera: Evanioidea)”, Genome, vol. 64, no. 3, pp. 253-264, 2021, doi: https://doi.org/10.1139/gen-2019-0186.
  • [42] Y. M. Zhang et al., “Delimiting the cryptic diversity and host preferences of Sycophila parasitoid wasps associated with oak galls using phylogenomic data”, Molecular Ecology, vol. 31, no. 16, pp. 4417-4433, 2022, doi: https://doi.org/10.1111/mec.16582.
  • [43] P. C. S. Barroso, R. S. T. Menezes, M. L. de Oliveira, and A. Somavilla, “A systematic review of the Neotropical social wasp genus Angiopolybia Araujo, 1946 (Hymenoptera: Vespidae): species delimitation, morphological diagnosis, and geographical distribution”, Arthropod Systematics & Phylogeny, vol. 80, pp. 75-97, 2022, doi: 10.3897/asp.80.e71492.
  • [44] S. Shimizu and K. Maeto, “A new distinctive Darwin wasp represents the first record of the Ophion minutus species-group (Hymenoptera: Ichneumonidae: Ophioninae) from Japan and the Far East, with an analysis of DNA barcode-based species delimitation in Ophion”, Zoological Studies, vol. 62, pp. 27, 2023, doi: 10.6620/ZS.2023.62-27.
  • [45] M. M. M. Alam, M. D. S. T. De Croos, S. Pálsson and S. Pálsson, “Mitochondrial DNA variation reveals distinct lineages in Penaeus semisulcatus (Decapoda, Penaeidae) from the Indo-West Pacific Ocean”, Mar. Ecol, vol. 38, pp. e12406, 2017, doi: https://doi.org/10.1111/maec.12406.
  • [46] C. Tavares and J. Gusmao, “Description of a new Penaeidae (Decapoda: Dendrobranchiata) species, Farfantepenaeus isabelae sp. Nov, Zootaxa, vol. 4171, pp. 505–516, 2016, doi: 10.11646/ZOOTAXA.4171.3.6.
  • [47] B. Rannala and Z. Yang, “Species Delimitation.” editors In C. Scornavacca, F. Delsuc and N. Galtier, Phylogenetics in the Genomic Era, chapter No. 5.5, 5.5:1–5.5:18, 2020.
  • [48] B. C. Carstens, T. A. Pelletier, N. M. Reid and J. D. Satler, “How to fail at species delimitation”, Molecular Ecology, vol. 22, no. 17, pp. 4369-4383, 2013, doi: https://doi.org/10.1111/mec.12413.
  • [49] M. H. Shirley, K. A. Vliet, A. N. Carr and J. D. Austin, “Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation”, Proceeding of the Royal Society B: Biological Sciences, vol. 281, pp. 20132483, 2014, doi: https://doi.org/10.1098/rspb.2013.2483.
  • [50] N. Puillandre, S. Brouillet and G. Achaz, G, “ASAP: assemble species by automatic partitioning”, Molecular Ecology Resources, vol. 21, no. 2, pp. 609-620, 2021, doi: https://doi.org/10.1111/1755-0998.13281.
  • [51] F. M. Bianchi and L. T. Gonçalves, “Borrowing the Pentatomomorpha tome from the DNA barcode library: Scanning the overall performance of cox1 as a tool”, J. Zool. Syst. Evol. Res., vol. 59, pp. 992–1012, 2021, doi: https://doi.org/10.1111/jzs.12476.
  • [52] B. C. Carstens, T. A. Pelletier, N. M. Reid and J. D. Satler, “How to fail at species delimitation”, Molecular Ecology, vol. 22, no. 17, pp. 4369-4383, 2013, https://doi.org/10.1111/mec.12413.
  • [53] M. H. Shirley, K. A. Vliet, A. N. Carr and J. D. Austin, “Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation”, Proceeding of the Royal Society B: Biological Sciences, vol. 281, pp. 2013-2483, 2014, doi: https://doi.org/10.1098/rspb.2013.2483.
  • [54] A. Luo, C. Ling, S. Y. Ho and C. D. Zhu, “Comparison of methods for molecular species delimitation across a range of speciation scenarios”, Systematic Biology, vol. 67, no 5, pp. 830–846, 2018, doi: https://doi.org/10.1093/sysbio/syy011.
  • [55] Yang, B., Cai, J., & Cheng, X. (2011). Identification of astigmatid mites using ITS2 and COI regions. Parasitology research, vol. 108, pp. 497-503, doi: https://doi.org/10.1007/s00436-010-2153-y.
  • [56] D. P. Chobanov, S. Kaya, B. Grzywacz, E. Warchałowska-Śliwa and B. Çıplak, “The Anatolio-Balkan phylogeographic fault: a snapshot from the genus Isophya (Orthoptera, Tettigoniidae)”, Zoologica Scripta, vol. 46, no. 2, pp.165–179, 2016, doi: https://doi.org/10.1111/zsc.12194.
  • [57] B. Çıplak, S. Kaya, Z. Boztepe and I. Gündüz, “Mountainous genus Anterastes (Orthoptera, Tettigoniidae): Autochthonous survival across several glacial ages via vertical range shifts”, Zoologica Scripta, vol. 44, pp. 534–549, 2015, doi: https://doi.org/10.1111/zsc.12118.
  • [58] M. Heidemaa, M. Nuorteva, J. Hantula and U. Saarma, “Dolerus asper Zaddach, 1859 and Dolerus brevicornis Zaddach, 1859 (Hymenoptera: Tenthredinidae), with notes on their phylogeny”, European Journal of Entomology, vol. 101, no. 4, pp. 637-650, 2004.
  • [59] S. M. Aljanabi and I. Martinez, “Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques”, Nucleic acids research, vol. 25, pp. 4692–4693, 1997.
  • [60] C. Simon, F. Frati, A. Beckenbach, B. Crespi, H. Liu, P. Flook, “Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain- reaction primers”, Annals of the Entomological Society of America, vol. 87, pp. 651-701, 1994.
  • [61] M. Kearse et al., “Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data”, Bioinformatics, vol. 28, no. 12, pp. 1647-1649, 2012, doi: https://doi.org/10.1093/bioinformatics/bts199.
  • [62] Blastn algorithms, https://blast.ncbi.nlm.nih.gov/Blast.cgi [accessed 2023 Dec 5].
  • [63] K. Katoh and D. M. Standley, “MAFFT multiple sequence alignment software version 7: improvements in performance and usability”, Molecular Biology and Evolution, vol. 30, no. 4, pp. 772-780, 2013, doi: https://doi.org/10.1093/molbev/mst010.
  • [64] M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences”, Journal of Molecular Evolution, vol. 16, pp. 111-120, 1980.
  • [65] S. Kumar, G. Stecher and K. Tamura, “MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets”, Molecular Biology and Evolution, vol. 33, no. 7, pp. 1870-1874, 2016, doi: https://doi.org/10.1093/molbev/msw054.
  • [66] D. Darriba, G. L. Taboada, R. Doallo and D. Posada, “jModelTest 2: more models, new heuristics and parallel computing”, Nature Methods, vol. 9, no 8, pp. 772-772, 2012, doi: 10.1038/nmeth.2109.
  • [67] A. Stamatakis, “RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies”, Bioinformatics, vol. 30, no. 9, pp. 1312-1313, 2014, doi: https://doi.org/10.1093/bioinformatics/btu033.
  • [68] A. Rambaut, “FigTree v.1.4.4. [accessed 2020 Oct 25]. http://tree.bio.ed.ac.uk/software/figtree/”, 2017.
  • [69] J. Pons et al., “Sequence-based species delimitation for the DNA taxonomy of undescribed insects”, Systematic Biology, vol. 55, pp. 595-609, 2006, doi: https://doi.org/10.1080/10635150600852011.
  • [70] J. Zhang, P. Kapli, P. Pavlidis and A. Stamatakis, “A general species delimitation method with applications to phylogenetic placements”, Bioinformatics, vol. 29, no. 22, pp. 2869-2876, 2013, doi: https://doi.org/10.1093/bioinformatics/btt499.
  • [71] N. Puillandre, S. Brouillet and G. Achaz, “ASAP: Assemble species by automatic partitioning”, Molecular Ecology Resources, vol. 21, pp. 609–620, 2021, doi: https://doi.org/10.1111/1755-0998.13281.
  • [72] R. Meier, K. Shiyang, G. Vaidya and P. K. Ng, “DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success”, Systematic Biology, vol. 55, no 5, pp 715-728, 2006, doi: https://doi.org/10.1080/10635150600969864.
  • [73] R Core Team, “R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria”. ISBN 3-900051-07-0, URL (Web page: http://www.R-project.org/)(Date accessed: July 2021), 2014.
  • [74] P. D. Hebert, S. Ratnasingham and J. R. De Waard, “Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species”, Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 270, no: suppl_1, pp. S96-S99, 2003, doi: https://doi.org/10.1098/rsbl.2003.0025.
  • [75] R. Leys S. J. B. Cooper and P. Schwarz “Molecular phylogeny of the carpenter bees, genus Xylocopa (Hymenoptera: Apidae), based on mitochondrial DNA sequences”, Mol Phylogenet Evol., vol. 17, pp. 407-418, 2000, doi: https://doi.org/10.1006/mpev.2000.0851.
  • [76] B. N. Danforth, L. Conway and S. Ji, “Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae)”, Syst Biol, vol. 52, pp. 23-36, 2003, doi: https://doi.org/10.1080/10635150390132687.
  • [77] M. Budak, E. M. Korkmaz and H. H. Başibüyük, “A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae) based on mtDNA COI gene: a test of traditional classification”, ZooKeys, vol. 130, pp. 363, 2011, doi: 10.3897/zookeys.130.1466.
  • [78] E. M. Korkmaz, M. Budak and H. H. Başibüyük, “Utilization of cytochrome oxidase I in Cephus pygmeus (L.) (Hymenoptera: Cephidae)”, Turkish Journal of Biology, vol. 35, no. 6, pp. 713-726, 2011, doi: 10.3906/biy-1003-65.
  • [79] P. Y. Chen, B. Y. Zheng, J. X. Liu and S. J. Wei, “Next-generation sequencing of two mitochondrial genomes from family Pompilidae (Hymenoptera: Vespoidea) reveal novel patterns of gene arrangement”, International Journal of Molecular Sciences, vol. 17, no. 10, pp. 1641, 2016, doi: https://doi.org/10.3390/ijms17101641.
  • [80] D. Fontaneto, C. Boschetti and C. Ricci, “Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps”, Journal of Evolutionary Biology, vol. 21, pp. 580–587, 2008, doi: https://doi.org/10.1111/j.1420-9101.2007.01472.x.
  • [81] P. D. N. Hebert, M. Y. Stoeckle, T. S. Zemlak and C. M. Francis, “Identification of birds through DNA barcodes”, Plos Biology, vol. 2, pp. 1657-1720, doi: https://doi.org/10.1371/journal.pbio.0020312.
  • [82] Monaghan, et. al., “Accelerated species inventory on Madagascar using coalescent-based models of species delineation”, Systematic Biology, vol. 58, no. 3, pp. 298-311, 2009, doi: https://doi.org/10.1093/sysbio/syp027.
  • [83] F. S. Ceccarelli, M. J. Sharkey and A. Zaldívar-Riverón, “Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach”, Molecular Phylogenetics and Evolution, vol. 62, pp. 485–495, 2019, doi: https://doi.org/10.1016/j.ympev.2011.10.018.
  • [84] S. Fernández‐Flores, J. L. Fernández‐Triana, J. J. Martinez and A. Zaldívar‐Riverón, “DNA barcoding species inventory of Microgastrinae wasps (Hymenoptera, Braconidae) from a Mexican tropical dry forest”, Molecular Ecology Resources, vol. 13, no. 6, pp. 1146-1150, 2013, doi: https://doi.org/10.1111/1755-0998.12102.
  • [85] D. Baum, “Reading a phylogenetic tree: the meaning of monophyletic groups”, Nature Education, vol. 1, no. 1, pp. 190, 2008.
  • [86] A. S. Lang, G. Bocksberger and M. Stech, "Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA”, Molecular Phylogenetics and Evolution, vol. 92, pp. 217-225, doi: https://doi.org/10.1016/j.ympev.2015.06.019.
  • [87]R. Arrigoni et al., “Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species”, Molecular Phylogenetics and Evolution, vol. 105, pp. 146-159, 2016, doi: https://doi.org/10.1016/j.ympev.2016.08.023.
  • [88] C. Wang, S. Agrawal, J. Laudien, V. Häussermann, V. and C. Held, “Discrete phenotypes are not underpinned by genome-wide genetic differentiation in the squat lobster Munida gregaria (Crustacea: Decapoda: Munididae): a multi-marker study covering the Patagonian shelf”, BMC Evolutionary Biology, vol. 16, no. 1, pp. 1-16, 2016, doi: 10.1186/s12862-016-0836-4.
  • [89] A. Luo, C. Ling, S. Y. Ho and C. D. Zhu, “Comparison of methods for molecular species delimitation across a range of speciation scenarios”, Systematic Biology, vol. 67, no. 5, pp. 830-846, 2018, doi: https://doi.org/10.1093/sysbio/syy011.
  • [90] M. Kekkonen and P. D. Hebert, “DNA barcode‐based delineation of putative species: efficient start for taxonomic workflows”, Molecular Ecology Resources, vol. 14, no. 4, pp. 706-715, 2014, doi: https://doi.org/10.1111/1755-0998.12233.
Year 2024, Issue: 056, 23 - 35, 31.03.2024
https://doi.org/10.59313/jsr-a.1380672

Abstract

Project Number

Tübitak 113Z753

References

  • [1] E. M. Viitasaari, “Sawflies I. A review of the suborder, the Western Palae- arctic taxa of Xyeloidea and Pamphilioidea”, Tremex Press, Helsinki, pp. 516, 2002.
  • [2] A. P. Aguiar et al., “Order Hymenoptera. In: Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness”, Zootaxa, vol. 3703, no. 1, pp. 51-65, 2013, doi: https://doi.org/10.11646/zootaxa.3703.1.12.
  • [3] G. Niu et al., “Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily”, Insects, vol. 12, pp. 495, 2021, doi: https://doi.org/10.3390/insects12060495.
  • [4] I. D. Gauld and B. Bolton, “The Hymenoptera”, Oxford University Press, Oxford, 1988.
  • [5] D. A. Grimaldi and M. S. Engel, “Evolution of the Insects”, Cambridge University Press, New York, 2005.
  • [6] S. Schmidt et al., “Identification of sawflies and horntails (Hymenoptera,‘Symphyta’) through DNA barcodes: Successes and Caveats”, Molecular Ecology Resources, vol. 17, no. 4, pp. 670-685, 2017, doi: https://doi.org/10.1111/1755-0998.12614.
  • [7] A. Taeger et al., “ECatSym. Electronic World Catalog of Symphyta (Insecta, Hymenoptera)”, Program version 5.0 (19 Dec 2018), data version 40 (23 Sep 2018). Senckenberg Deutsches Entomologisches Institut (SDEI), Müncheberg. (Web page: https://sdei.de/ecatsym/) (Date accessed: 21 May 2019)
  • [8] A. M. Barker, “The dentification of larvae of eight graminivorous species of the sawfly genus Dolerus Panzer 1801 (Hymenoptera: Tenthredinidae) regularly found in grass and cereal fields in southern England”, Journal of Natural History, vol. 32, no. 8, pp. 1181-1215, 1998.
  • [9] J. Borowski, “Materials to the knowledge of Polish sawflies. The genus Dolerus Panzer, 1801 (Hymenoptera, Symphyta, Tenthredinidae, Selandriinae). Part XVIII ̶ Dolerus (Achaetoprion) pachycerus Hartig, 1837 with observations on its biology and a key for identification of larvae of subgenus Achaetoprion Goulet, 1986”, Polish Journal of Entomology, vol. 92, pp. 1-6, 2023, doi: 10.5604/01.3001.0053.3993.
  • [10] M. D. Schwarzfeld and F. A. H. Sperling, “Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae)”, ZooKeys, vol. 462, pp. 59–114, 2014, doi: 10.3897/zookeys.462.8229.
  • [11] J. T. Longino, and M. G. Branstetter, “Phylogenomic species delimitation, taxonomy, and ‘bird guide’ identification for the Neotropical ant genus Rasopone (Hymenoptera: Formicidae)”, Insect Systematics and Diversity, vol. 4, no. 2, pp. 1, 2020, doi: https://doi.org/10.1093/isd/ixaa004.
  • [12] C. Waichert, J. S. Wilson, J. P. Pitts and C. D. V. Dohlen, “Phylogenetic species delimitation for the widespread spider wasp Ageniella accepta (Hymenoptera: Pompilidae), with new synonyms”, Insect Systematics and Evolution, vol. 51, no. 3, pp. 532-549, 2020, doi: https://doi.org/10.1163/1876312X-00002207.
  • [13] Z. Liu et al., “Tackling the Taxonomic Challenges in the Family Scoliidae (Insecta, Hymenoptera) Using an Integrative Approach: A Case Study from Southern China”, Insects, vol. 12, no. 10, pp. 892, 2021, doi: https://doi.org/10.3390/insects12100892.
  • [14] M. M. Prebus, “Phylogenomic species delimitation in the ants of the Temnothorax salvini group (Hymenoptera: Formicidae): an integrative approach”, Systematic Entomology, vol. 46, no. 2, pp. 307-326, 2021, doi: https://doi.org/10.1111/syen.12463.
  • [15] P. C. S. Barroso, R. S. T. Menezes, M. L. de Oliveira, and A. Somavilla, “A systematic review of the Neotropical social wasp genus Angiopolybia Araujo, 1946 (Hymenoptera: Vespidae): species delimitation, morphological diagnosis, and geographical distribution”, Arthropod Systematics and Phylogeny, vol. 80, pp. 75-97, 2022, doi: 10.3897/asp.80.e71492.
  • [16] A. Somavilla, M. L. D. Oliveira, R. S. Menezes and P. C. S. Barroso, “A systematic review of the Neotropical social wasp genus Angiopolybia Araujo, 1946 (Hymenoptera: Vespidae): species delimitation, morphological diagnosis, and geographical distribution”, Arthropod Systematics and Phylogeny, vol. 80, pp. 75-97, 2022, doi: 10.3897/asp.80.e71492.
  • [17] S. Shimizu and K. Maeto, “A New Distinctive Darwin Wasp Represents the First Record of the Ophion minutus Species-group (Hymenoptera: Ichneumonidae: Ophioninae) from Japan and the Far East, with an Analysis of DNA Barcode-based Species Delimitation in Ophion”. Zoological Studies, vol 62, 2023, doi: 10.6620/ZS.2023.62-27.
  • [18] S. Schulmeister, “Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis”, Biological Journal of the Linnean Society, vol. 79, no. 2, pp. 245-275, 2023, doi: https://doi.org/10.1046/j.1095-8312.2003.00233.x.
  • [19] M. Prous, M. Heidemaa, S. Akihiko and V. Soon, “Review of the sawfly genus Empria (Hymenoptera, Tenthredinidae) in Japan”, ZooKeys, vol. 150, pp. 347-380, 2011, doi: 10.3897/zookeys.150.1968.
  • [20] S. A. Leppänen, E. Altenhofer, A. D. Liston and T. Nyman, “Phylogenetics and evolution of host-plant use in leaf mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae)”, Molecular Phylogenetics and Evolution, vol. 64, no. 2, pp. 331-341, 2012, doi: https://doi.org/10.1016/j.ympev.2012.04.005.
  • [21] Y. Isaka and T. Sato, “Molecular phylogenetic and divergence time estimation analyzes of the sawfly subfamily Selandriinae (Hymenoptera: Tenthredinidae)”, Entomological Science, vol. 17, no. 4, pp. 435-439, 2014, doi: https://doi.org/10.1111/ens.12080.
  • [22] T. Malm and T. Nyman, “Phylogeny of the Symphytan grade of Hymenoptera: new pieces into the old jigsaw (fly) puzzle”, Cladistics, vol. 31, no. 1, pp. 1-17, 2015, doi: https://doi.org/10.1111/cla.12069.
  • [23] L. Vilhelmsen, “Morphological phylogenetics of the Tenthredinidae (Insecta: Hymenoptera)”, Invertebrate Systematics, vol. 29, no. 2, pp. 164-190, 2015, doi: http://dx.doi.org/10.1071/IS14056.
  • [24] M. Budak, M. Güler, E. M. Korkmaz, S. H. Örgen and H. H. Başıbüyük, “The characterization and taxonomic utility of ITS2 in Tenthredopsis Costa, 1859 (Tenthredinidae: Hymenoptera) with some new records from Turkey”, Biochemical Systematics and Ecology, vol. 66, pp. 76-85, 2016, doi: https://doi.org/10.1016/j.bse.2016.03.008.
  • [25] M. Gülmez, M. Budak, E. M. Korkmaz, S. H. Örgen and H. H. Başibüyük, “Characterization and taxonomic utility of ITS2 in Dolerus Panzer, 1801 (Hymenoptera: Tenthredinidae)”, Turkish Journal of Entomology, vol. 46, no. 1, pp. 13-23, 2022, doi: http://dx.doi.org/10.16970/entoted.1018061.
  • [26] J. W. Sites Jr and J. C. Marshall, “Delimiting species: a Renaissance issue in systematic biology”, Trends in Ecology and Evolution, vol. 18, no. 9, pp. 462-470, 2003, doi: ttps://doi.org/10.1016/S0169-5347(03)00184-8.
  • [27] A.D. Roe and F. A. Sperling, “Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding”, Molecular Phylogenetics and Evolution, vol. 44, no. 1, pp. 325-345, 2007, doi: https://doi.org/10.1016/j.ympev.2006.12.005.
  • [28] M. D. Schwarzfeld and F. A. Sperling, “Comparison of five methods for delimitating species in Ophion Fabricius, a diverse genus of parasitoid wasps (Hymenoptera, Ichneumonidae)”, Molecular Phylogenetics and Evolution, vol. 93, pp. 234-248, 2005, doi: https://doi.org/10.1016/j.ympev.2015.08.003.
  • [29] P. N. D. Hebert and T. R. Gregory, “The promise of DNA barcoding for taxonomy”, Systematic Biology, vol. 54, pp. 852–859, 2005, doi: https://doi.org/10.1080/10635150500354886.
  • [30] A. Valentini, F. Pompanon and P. P. Taberlet, “DNA barcoding for ecologists”, Trends in Ecology and Evolution, vol. 24, pp. 110–117, 2009, doi: https://doi.org/10.1016/j.tree.2008.09.011.
  • [31] P. Z. Goldstein and R. DeSalle, “Integrating DNA barcode data and taxonomic practice: determination, discovery, and description”, Bioessays, vol. 33, pp.135–147, 2011, doi: https://doi.org/10.1002/bies.201000036.
  • [32] M. S. Caterino, S. Cho and F. A. H. Sperling, “E current state of insect molecular systematics: a thriving tower of babel”, Annual Review of Entomology, vol. 45, no. 1, pp. 1–54, 2000, doi: https://doi.org/10.1146/annurev.ento.45.1.1.
  • [33] P. D. N. Hebert, A, Cywinska, S. L. Ball and J. R. deWaard. “Biological identifications through DNA barcodes”, Proceedings of the Royal Society B. Biological Sciences, vol. 270, pp. 313–321, 2003a, doi: https://doi.org/10.1098/rspb.2002.2218.
  • [34] C. R. Bonvicino, B. Lemos and H. N. Seuánez, “Molecular phylogenetics of howler monkeys (Alouatta, Platyrrhini) A comparison with karyotypic data”, Chromosoma, vol. 110, pp. 241–246, 2001, doi: https://doi.org/10.1007/s004120000128.
  • [35] F. F. Nascimento, C. R. Bonvicino, and H. N. Seuánez, “Population genetic studies of Alouatta caraya (Alouattinae, Primates): inferences on geographic distribution and ecology”, Am J Primatol, vol. 69, pp. 1093–1102, 2007, doi: https://doi.org/10.1002/ajp.20423.
  • [36] N. Puillandre, A, Lambert, S. Brouillet and G. Achaz, “ABGD, Automatic Barcode Gap Discovery for primary species delimitation”, Molecular Ecology, vol. 21, pp. 1864-1877, 2012, doi: https://doi.org/10.1111/j.1365-294X.2011.05239.x.
  • [37] A. Zaldívar-Riverón et al., “DNA barcoding a highly diverse group of parasitoid wasps (Braconidae: Doryctinae) from a Mexican nature reserve”, Mitochondrial DNA, vol. 21, no. sup1, pp. 18-23, 2007, doi: https://doi.org/10.3109/19401736.2010.523701.
  • [38] E. P. Fagan‐Jeffries, S. J. Cooper, T. Bertozzi, T. M. Bradford and A. D. Austin, “DNA barcoding of microgastrine parasitoid wasps (Hymenoptera: Braconidae) using high‐throughput methods more than doubles the number of species known for Australia”, Molecular Ecology Resources, vol. 18, no. 5, pp. 1132-1143, 2018, doi: https://doi.org/10.1111/1755-0998.12904.
  • [39] S. K. Oberprieler, A. N. Andersen and C. C. Moritz, “Ants in Australia’s monsoonal tropics: CO1 barcoding reveals extensive unrecognised diversity”, Diversity, vol. 10, no. 2, pp. 36, 2018, doi: https://doi.org/10.3390/d10020036.
  • [40] B. A. Parslow, M. P. Schwarz and M. I. Stevens, “Review of the biology and host associations of the wasp genus Gasteruption (Evanioidea: Gasteruptiidae)”, Zoological Journal of the Linnean Society, vol. 189, no. 4, pp. 1105-1122, 2020, doi: https://doi.org/10.1093/zoolinnean/zlaa005.
  • [41] B. A. Parslow, M. P. Schwarz, and M. I. Stevens, “Molecular diversity and species delimitation in the family Gasteruptiidae (Hymenoptera: Evanioidea)”, Genome, vol. 64, no. 3, pp. 253-264, 2021, doi: https://doi.org/10.1139/gen-2019-0186.
  • [42] Y. M. Zhang et al., “Delimiting the cryptic diversity and host preferences of Sycophila parasitoid wasps associated with oak galls using phylogenomic data”, Molecular Ecology, vol. 31, no. 16, pp. 4417-4433, 2022, doi: https://doi.org/10.1111/mec.16582.
  • [43] P. C. S. Barroso, R. S. T. Menezes, M. L. de Oliveira, and A. Somavilla, “A systematic review of the Neotropical social wasp genus Angiopolybia Araujo, 1946 (Hymenoptera: Vespidae): species delimitation, morphological diagnosis, and geographical distribution”, Arthropod Systematics & Phylogeny, vol. 80, pp. 75-97, 2022, doi: 10.3897/asp.80.e71492.
  • [44] S. Shimizu and K. Maeto, “A new distinctive Darwin wasp represents the first record of the Ophion minutus species-group (Hymenoptera: Ichneumonidae: Ophioninae) from Japan and the Far East, with an analysis of DNA barcode-based species delimitation in Ophion”, Zoological Studies, vol. 62, pp. 27, 2023, doi: 10.6620/ZS.2023.62-27.
  • [45] M. M. M. Alam, M. D. S. T. De Croos, S. Pálsson and S. Pálsson, “Mitochondrial DNA variation reveals distinct lineages in Penaeus semisulcatus (Decapoda, Penaeidae) from the Indo-West Pacific Ocean”, Mar. Ecol, vol. 38, pp. e12406, 2017, doi: https://doi.org/10.1111/maec.12406.
  • [46] C. Tavares and J. Gusmao, “Description of a new Penaeidae (Decapoda: Dendrobranchiata) species, Farfantepenaeus isabelae sp. Nov, Zootaxa, vol. 4171, pp. 505–516, 2016, doi: 10.11646/ZOOTAXA.4171.3.6.
  • [47] B. Rannala and Z. Yang, “Species Delimitation.” editors In C. Scornavacca, F. Delsuc and N. Galtier, Phylogenetics in the Genomic Era, chapter No. 5.5, 5.5:1–5.5:18, 2020.
  • [48] B. C. Carstens, T. A. Pelletier, N. M. Reid and J. D. Satler, “How to fail at species delimitation”, Molecular Ecology, vol. 22, no. 17, pp. 4369-4383, 2013, doi: https://doi.org/10.1111/mec.12413.
  • [49] M. H. Shirley, K. A. Vliet, A. N. Carr and J. D. Austin, “Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation”, Proceeding of the Royal Society B: Biological Sciences, vol. 281, pp. 20132483, 2014, doi: https://doi.org/10.1098/rspb.2013.2483.
  • [50] N. Puillandre, S. Brouillet and G. Achaz, G, “ASAP: assemble species by automatic partitioning”, Molecular Ecology Resources, vol. 21, no. 2, pp. 609-620, 2021, doi: https://doi.org/10.1111/1755-0998.13281.
  • [51] F. M. Bianchi and L. T. Gonçalves, “Borrowing the Pentatomomorpha tome from the DNA barcode library: Scanning the overall performance of cox1 as a tool”, J. Zool. Syst. Evol. Res., vol. 59, pp. 992–1012, 2021, doi: https://doi.org/10.1111/jzs.12476.
  • [52] B. C. Carstens, T. A. Pelletier, N. M. Reid and J. D. Satler, “How to fail at species delimitation”, Molecular Ecology, vol. 22, no. 17, pp. 4369-4383, 2013, https://doi.org/10.1111/mec.12413.
  • [53] M. H. Shirley, K. A. Vliet, A. N. Carr and J. D. Austin, “Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation”, Proceeding of the Royal Society B: Biological Sciences, vol. 281, pp. 2013-2483, 2014, doi: https://doi.org/10.1098/rspb.2013.2483.
  • [54] A. Luo, C. Ling, S. Y. Ho and C. D. Zhu, “Comparison of methods for molecular species delimitation across a range of speciation scenarios”, Systematic Biology, vol. 67, no 5, pp. 830–846, 2018, doi: https://doi.org/10.1093/sysbio/syy011.
  • [55] Yang, B., Cai, J., & Cheng, X. (2011). Identification of astigmatid mites using ITS2 and COI regions. Parasitology research, vol. 108, pp. 497-503, doi: https://doi.org/10.1007/s00436-010-2153-y.
  • [56] D. P. Chobanov, S. Kaya, B. Grzywacz, E. Warchałowska-Śliwa and B. Çıplak, “The Anatolio-Balkan phylogeographic fault: a snapshot from the genus Isophya (Orthoptera, Tettigoniidae)”, Zoologica Scripta, vol. 46, no. 2, pp.165–179, 2016, doi: https://doi.org/10.1111/zsc.12194.
  • [57] B. Çıplak, S. Kaya, Z. Boztepe and I. Gündüz, “Mountainous genus Anterastes (Orthoptera, Tettigoniidae): Autochthonous survival across several glacial ages via vertical range shifts”, Zoologica Scripta, vol. 44, pp. 534–549, 2015, doi: https://doi.org/10.1111/zsc.12118.
  • [58] M. Heidemaa, M. Nuorteva, J. Hantula and U. Saarma, “Dolerus asper Zaddach, 1859 and Dolerus brevicornis Zaddach, 1859 (Hymenoptera: Tenthredinidae), with notes on their phylogeny”, European Journal of Entomology, vol. 101, no. 4, pp. 637-650, 2004.
  • [59] S. M. Aljanabi and I. Martinez, “Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques”, Nucleic acids research, vol. 25, pp. 4692–4693, 1997.
  • [60] C. Simon, F. Frati, A. Beckenbach, B. Crespi, H. Liu, P. Flook, “Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain- reaction primers”, Annals of the Entomological Society of America, vol. 87, pp. 651-701, 1994.
  • [61] M. Kearse et al., “Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data”, Bioinformatics, vol. 28, no. 12, pp. 1647-1649, 2012, doi: https://doi.org/10.1093/bioinformatics/bts199.
  • [62] Blastn algorithms, https://blast.ncbi.nlm.nih.gov/Blast.cgi [accessed 2023 Dec 5].
  • [63] K. Katoh and D. M. Standley, “MAFFT multiple sequence alignment software version 7: improvements in performance and usability”, Molecular Biology and Evolution, vol. 30, no. 4, pp. 772-780, 2013, doi: https://doi.org/10.1093/molbev/mst010.
  • [64] M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences”, Journal of Molecular Evolution, vol. 16, pp. 111-120, 1980.
  • [65] S. Kumar, G. Stecher and K. Tamura, “MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets”, Molecular Biology and Evolution, vol. 33, no. 7, pp. 1870-1874, 2016, doi: https://doi.org/10.1093/molbev/msw054.
  • [66] D. Darriba, G. L. Taboada, R. Doallo and D. Posada, “jModelTest 2: more models, new heuristics and parallel computing”, Nature Methods, vol. 9, no 8, pp. 772-772, 2012, doi: 10.1038/nmeth.2109.
  • [67] A. Stamatakis, “RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies”, Bioinformatics, vol. 30, no. 9, pp. 1312-1313, 2014, doi: https://doi.org/10.1093/bioinformatics/btu033.
  • [68] A. Rambaut, “FigTree v.1.4.4. [accessed 2020 Oct 25]. http://tree.bio.ed.ac.uk/software/figtree/”, 2017.
  • [69] J. Pons et al., “Sequence-based species delimitation for the DNA taxonomy of undescribed insects”, Systematic Biology, vol. 55, pp. 595-609, 2006, doi: https://doi.org/10.1080/10635150600852011.
  • [70] J. Zhang, P. Kapli, P. Pavlidis and A. Stamatakis, “A general species delimitation method with applications to phylogenetic placements”, Bioinformatics, vol. 29, no. 22, pp. 2869-2876, 2013, doi: https://doi.org/10.1093/bioinformatics/btt499.
  • [71] N. Puillandre, S. Brouillet and G. Achaz, “ASAP: Assemble species by automatic partitioning”, Molecular Ecology Resources, vol. 21, pp. 609–620, 2021, doi: https://doi.org/10.1111/1755-0998.13281.
  • [72] R. Meier, K. Shiyang, G. Vaidya and P. K. Ng, “DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success”, Systematic Biology, vol. 55, no 5, pp 715-728, 2006, doi: https://doi.org/10.1080/10635150600969864.
  • [73] R Core Team, “R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria”. ISBN 3-900051-07-0, URL (Web page: http://www.R-project.org/)(Date accessed: July 2021), 2014.
  • [74] P. D. Hebert, S. Ratnasingham and J. R. De Waard, “Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species”, Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 270, no: suppl_1, pp. S96-S99, 2003, doi: https://doi.org/10.1098/rsbl.2003.0025.
  • [75] R. Leys S. J. B. Cooper and P. Schwarz “Molecular phylogeny of the carpenter bees, genus Xylocopa (Hymenoptera: Apidae), based on mitochondrial DNA sequences”, Mol Phylogenet Evol., vol. 17, pp. 407-418, 2000, doi: https://doi.org/10.1006/mpev.2000.0851.
  • [76] B. N. Danforth, L. Conway and S. Ji, “Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae)”, Syst Biol, vol. 52, pp. 23-36, 2003, doi: https://doi.org/10.1080/10635150390132687.
  • [77] M. Budak, E. M. Korkmaz and H. H. Başibüyük, “A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae) based on mtDNA COI gene: a test of traditional classification”, ZooKeys, vol. 130, pp. 363, 2011, doi: 10.3897/zookeys.130.1466.
  • [78] E. M. Korkmaz, M. Budak and H. H. Başibüyük, “Utilization of cytochrome oxidase I in Cephus pygmeus (L.) (Hymenoptera: Cephidae)”, Turkish Journal of Biology, vol. 35, no. 6, pp. 713-726, 2011, doi: 10.3906/biy-1003-65.
  • [79] P. Y. Chen, B. Y. Zheng, J. X. Liu and S. J. Wei, “Next-generation sequencing of two mitochondrial genomes from family Pompilidae (Hymenoptera: Vespoidea) reveal novel patterns of gene arrangement”, International Journal of Molecular Sciences, vol. 17, no. 10, pp. 1641, 2016, doi: https://doi.org/10.3390/ijms17101641.
  • [80] D. Fontaneto, C. Boschetti and C. Ricci, “Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps”, Journal of Evolutionary Biology, vol. 21, pp. 580–587, 2008, doi: https://doi.org/10.1111/j.1420-9101.2007.01472.x.
  • [81] P. D. N. Hebert, M. Y. Stoeckle, T. S. Zemlak and C. M. Francis, “Identification of birds through DNA barcodes”, Plos Biology, vol. 2, pp. 1657-1720, doi: https://doi.org/10.1371/journal.pbio.0020312.
  • [82] Monaghan, et. al., “Accelerated species inventory on Madagascar using coalescent-based models of species delineation”, Systematic Biology, vol. 58, no. 3, pp. 298-311, 2009, doi: https://doi.org/10.1093/sysbio/syp027.
  • [83] F. S. Ceccarelli, M. J. Sharkey and A. Zaldívar-Riverón, “Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach”, Molecular Phylogenetics and Evolution, vol. 62, pp. 485–495, 2019, doi: https://doi.org/10.1016/j.ympev.2011.10.018.
  • [84] S. Fernández‐Flores, J. L. Fernández‐Triana, J. J. Martinez and A. Zaldívar‐Riverón, “DNA barcoding species inventory of Microgastrinae wasps (Hymenoptera, Braconidae) from a Mexican tropical dry forest”, Molecular Ecology Resources, vol. 13, no. 6, pp. 1146-1150, 2013, doi: https://doi.org/10.1111/1755-0998.12102.
  • [85] D. Baum, “Reading a phylogenetic tree: the meaning of monophyletic groups”, Nature Education, vol. 1, no. 1, pp. 190, 2008.
  • [86] A. S. Lang, G. Bocksberger and M. Stech, "Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA”, Molecular Phylogenetics and Evolution, vol. 92, pp. 217-225, doi: https://doi.org/10.1016/j.ympev.2015.06.019.
  • [87]R. Arrigoni et al., “Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species”, Molecular Phylogenetics and Evolution, vol. 105, pp. 146-159, 2016, doi: https://doi.org/10.1016/j.ympev.2016.08.023.
  • [88] C. Wang, S. Agrawal, J. Laudien, V. Häussermann, V. and C. Held, “Discrete phenotypes are not underpinned by genome-wide genetic differentiation in the squat lobster Munida gregaria (Crustacea: Decapoda: Munididae): a multi-marker study covering the Patagonian shelf”, BMC Evolutionary Biology, vol. 16, no. 1, pp. 1-16, 2016, doi: 10.1186/s12862-016-0836-4.
  • [89] A. Luo, C. Ling, S. Y. Ho and C. D. Zhu, “Comparison of methods for molecular species delimitation across a range of speciation scenarios”, Systematic Biology, vol. 67, no. 5, pp. 830-846, 2018, doi: https://doi.org/10.1093/sysbio/syy011.
  • [90] M. Kekkonen and P. D. Hebert, “DNA barcode‐based delineation of putative species: efficient start for taxonomic workflows”, Molecular Ecology Resources, vol. 14, no. 4, pp. 706-715, 2014, doi: https://doi.org/10.1111/1755-0998.12233.
There are 90 citations in total.

Details

Primary Language English
Subjects Computational Ecology and Phylogenetics, Evolutionary Ecology, Phylogeny and Comparative Analysis
Journal Section Research Articles
Authors

Mehmet Gülmez 0000-0001-6547-7190

Ertan Mahir Korkmaz 0000-0003-0699-1354

Mahir Budak 0000-0001-5610-486X

Project Number Tübitak 113Z753
Publication Date March 31, 2024
Submission Date October 24, 2023
Acceptance Date January 10, 2024
Published in Issue Year 2024 Issue: 056

Cite

IEEE M. Gülmez, E. M. Korkmaz, and M. Budak, “Determination of the species boundaries of genus Dolerus (Hymenoptera: Tenthredinidae) using the COI gene”, JSR-A, no. 056, pp. 23–35, March 2024, doi: 10.59313/jsr-a.1380672.