Research Article
BibTex RIS Cite
Year 2024, Issue: 057, 97 - 109, 30.06.2024
https://doi.org/10.59313/jsr-a.1447814

Abstract

References

  • [1] M. Steele and F. M. Finucane, “Philosophically, is obesity really a disease?,” Obesity Reviews, p. e13590, 2023.
  • [2] T. K. Kyle, E. J. Dhurandhar, and D. B. Allison, “Regarding obesity as a disease: evolving policies and their implications,” Endocrinology and Metabolism Clinics, vol. 45, no. 3, pp. 511–520, 2016.
  • [3] A. M. Jastreboff, C. M. Kotz, S. Kahan, A. S. Kelly, and S. B. Heymsfield, “Obesity as a disease: the obesity society 2018 position statement,” Obesity, vol. 27, no. 1, pp. 7–9, 2019.
  • [4] CDC, “Overweight and Obesity.” Accessed: Jan. 04, 2024. [Online]. Available: http://www.cdc.gov/obesity/data/adult.html
  • [5] WHO, “Obesity and Overweight.” Accessed: Jan. 04, 2024. [Online]. Available: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
  • [6] V. Osadchiy et al., “Machine learning model to predict obesity using gut metabolite and brain microstructure data,” Sci Rep, vol. 13, no. 1, p. 5488, 2023.
  • [7] J. J. Reilly and J. Kelly, “Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review,” Int J Obes, vol. 35, no. 7, pp. 891–898, 2011.
  • [8] S. S. Shinde and R. S. Vaidya, “Automated Obesity Detection and Classification Via Live Camera Analysis” International Research Journal of Modernization in Engineering Technology and Science, vol. 5, no. 11, 2023.
  • [9] S. A. Alsareii et al., “Machine-Learning-Enabled Obesity Level Prediction Through Electronic Health Records,” Computer Systems Science and Engineering, vol. 46, no. 3, pp. 3715–3728, 2023.
  • [10] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: Algorithm and applications,” Future generation computer systems, vol. 97, pp. 849–872, 2019.
  • [11] X. Meng, Y. Liu, X. Gao, and H. Zhang, A new bio−inspired algorithm: chicken swarm optimization. Springer, p. 86−94.
  • [12] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm,” Comput Struct, vol. 169, pp. 1–12, 2016.
  • [13] N. Yagmur, I. Dag, and H. Temurtas, “A new computer‐aided diagnostic method for classifying anaemia disease: Hybrid use of Tree Bagger and metaheuristics,” Expert Syst, p. e13528, 2023.
  • [14] N. Yagmur, I. Dag, and H. TEMURTAŞ, “A New Computer-Aided Diagnostic Method for Classifying Anemia Disease: Hybrid Use of Tree Bagger and Metaheuristics,” Authorea Preprints, 2023.
  • [15] S.-D. H. Ö. D. T. H. DÖRTERLER, “Hybridization of k-means and meta-heuristics algorithms for heart disease diagnosis,” New Trends in Engineering and Applied Natural Sciences, p. 55, 2022.
  • [16] S. Dörterler, H. Dumlu, D. Özdemir, and H. Temurtaş, “Melezlenmiş K-means ve Diferansiyel Gelişim Algoritmaları ile Kalp Hastalığının Teşhisi,” in International Conference on Engineering and Applied Natural Sciences içinde (ss. 1840-1844). Konya, 2022.
  • [17] S. Dörterler, “Kanser Hastalığı Teşhisinde Ölüm Oyunu Optimizasyon Algoritmasının Etkisi,” Mühendislik Alanında Uluslararası Araştırmalar VIII, p. 15, 2023.
  • [18] S. Dörterler, H. Dumlu, D. Özdemir, and H. Temurtaş, “Hybridization of Meta-heuristic Algorithms with K-Means for Clustering Analysis: Case of Medical Datasets,” Gazi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, pp. 1–11.
  • [19] S. Jeon, M. Kim, J. Yoon, S. Lee, and S. Youm, “Machine learning-based obesity classification considering 3D body scanner measurements,” Sci Rep, vol. 13, no. 1, p. 3299, 2023.
  • [20] T. Turan, “Optimize Edilmiş Denetimli Öğrenme Algoritmaları ile Obezite Analizi ve Tahmini,” Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 14, no. 2, pp. 301–312.
  • [21] T. Cui, Y. Chen, J. Wang, H. Deng, and Y. Huang, “Estimation of Obesity levels based on Decision trees,” in 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM), IEEE, 2021, pp. 160–165.
  • [22] M. Gupta, T.-L. T. Phan, H. T. Bunnell, and R. Beheshti, “Obesity Prediction with EHR Data: A deep learning approach with interpretable elements,” ACM Transactions on Computing for Healthcare (HEALTH), vol. 3, no. 3, pp. 1–19, 2022.
  • [23] K. Jindal, N. Baliyan, and P. S. Rana, “Obesity prediction using ensemble machine learning approaches,” in Recent Findings in Intelligent Computing Techniques: Proceedings of the 5th ICACNI 2017, Volume 2, Springer, 2018, pp. 355–362.
  • [24] E. De-La-Hoz-Correa, F. Mendoza Palechor, A. De-La-Hoz-Manotas, R. Morales Ortega, and A. B. Sánchez Hernández, “Obesity level estimation software based on decision trees,” 2019.
  • [25] F. H. Yagin et al., “Estimation of obesity levels with a trained neural Network Approach optimized by the bayesian technique,” Applied Sciences, vol. 13, no. 6, p. 3875, 2023.
  • [26] A. Clim, R. Zota, R. Constantinescu, and I. Ilie-Nemedi, “Health services in smart cities: Choosing the big data mining based decision support,” Int J Healthc Manag, vol. 13, no. 1, pp. 79–87, 2020.
  • [27] E. Şahin, D. Özdemir, and H. Temurtaş, “Multi-objective optimization of ViT architecture for efficient brain tumor classification,” Biomed Signal Process Control, vol. 91, p. 105938, 2024.
  • [28] N. Yağmur, “Anemi Hastalığı Sınıflandırmasında Karga Arama Optimizasyon Algoritması,” in Mühendislik Alanında Akademik Araştırma ve Derlemeler, 2023, pp. 291–307.
  • [29] N. Yagmur, I. Dag, and H. Temurtas, “Classification of anemia using Harris hawks optimization method and multivariate adaptive regression spline,” Neural Comput Appl, pp. 1–20, 2024.
  • [30] R.-C. Chen, C. Dewi, S.-W. Huang, and R. E. Caraka, “Selecting critical features for data classification based on machine learning methods,” J Big Data, vol. 7, no. 1, p. 52, 2020.
  • [31] S. Kilicarslan, M. Celik, and Ş. Sahin, “Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification,” Biomed Signal Process Control, vol. 63, p. 102231, 2021.
  • [32] F. M. Palechor and A. de la Hoz Manotas, “Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico,” Data Brief, vol. 25, p. 104344, 2019.
  • [33] K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study of categorical variable encoding techniques for neural network classifiers,” Int J Comput Appl, vol. 175, no. 4, pp. 7–9, 2017.
  • [34] T. Kavzoğlu and İ. Çölkesen, “Karar ağaçları ile uydu görüntülerinin sınıflandırılması,” Harita Teknolojileri Elektronik Dergisi, vol. 2, no. 1, pp. 36–45, 2010.
  • [35] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
  • [36] M. Pal and P. M. Mather, “An assessment of the effectiveness of decision tree methods for land cover classification,” Remote Sens Environ, vol. 86, no. 4, pp. 554–565, 2003.
  • [37] J. G. T. Anderson, “Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada,” Colonial Waterbirds, pp. 166–172, 1991.
  • [38] J. B. E. O’Malley and R. M. Evans, “Kleptoparasitism and associated foraging behaviors in American White Pelicans,” Colonial Waterbirds, pp. 126–129, 1983.
  • [39] W. Tuerxun, C. Xu, M. Haderbieke, L. Guo, and Z. Cheng, “A wind turbine fault classification model using broad learning system optimized by improved pelican optimization algorithm,” Machines, vol. 10, no. 5, p. 407, 2022.
  • [40] S. Kılıç, “Klinik karar vermede ROC analizi,” Journal of Mood Disorders, vol. 3, no. 3, pp. 135–140, 2013.
  • [41] F. Aydemir and S. Arslan, “A System Design with Deep Learning and IoT to Ensure Education Continuity for Post-COVID,” IEEE Transactions on Consumer Electronics, 2023.
  • [42] MATLAB, “Classification Learner.” Accessed: Jan. 04, 2024. [Online]. Available: https://www.mathworks.com/help/stats/classificationlearner-app.html

A hybrid approach to obesity level determination with decision tree and pelican optimization algorithm

Year 2024, Issue: 057, 97 - 109, 30.06.2024
https://doi.org/10.59313/jsr-a.1447814

Abstract

Approximately 2 billion people in the world struggle with "obesity" and factors like eating lifestyle, habits, health conditions and mode of transport affect obesity. In this study, an artificial intelligence and machine learning-based model has been developed to predict obesity levels. It is proposed to create a hybrid model by combining the Decision Tree (DT) algorithm with the Pelican Optimization Algorithm (POA) on the obesity dataset of 2111 patients in SSggle. These models emphasize the critical role of parameters, aiming to achieve high performance. To solve the classification problem of multi-class obesity level determination, fuzzy logic-based parameter optimization is used to achieve high performance. While obesity rates are increasing worldwide, the study, which aims to globalize the parameters with the random discovery strategy of POA, is thought to be helpful for health professionals and decision-makers by successfully predicting obesity levels.

References

  • [1] M. Steele and F. M. Finucane, “Philosophically, is obesity really a disease?,” Obesity Reviews, p. e13590, 2023.
  • [2] T. K. Kyle, E. J. Dhurandhar, and D. B. Allison, “Regarding obesity as a disease: evolving policies and their implications,” Endocrinology and Metabolism Clinics, vol. 45, no. 3, pp. 511–520, 2016.
  • [3] A. M. Jastreboff, C. M. Kotz, S. Kahan, A. S. Kelly, and S. B. Heymsfield, “Obesity as a disease: the obesity society 2018 position statement,” Obesity, vol. 27, no. 1, pp. 7–9, 2019.
  • [4] CDC, “Overweight and Obesity.” Accessed: Jan. 04, 2024. [Online]. Available: http://www.cdc.gov/obesity/data/adult.html
  • [5] WHO, “Obesity and Overweight.” Accessed: Jan. 04, 2024. [Online]. Available: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
  • [6] V. Osadchiy et al., “Machine learning model to predict obesity using gut metabolite and brain microstructure data,” Sci Rep, vol. 13, no. 1, p. 5488, 2023.
  • [7] J. J. Reilly and J. Kelly, “Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review,” Int J Obes, vol. 35, no. 7, pp. 891–898, 2011.
  • [8] S. S. Shinde and R. S. Vaidya, “Automated Obesity Detection and Classification Via Live Camera Analysis” International Research Journal of Modernization in Engineering Technology and Science, vol. 5, no. 11, 2023.
  • [9] S. A. Alsareii et al., “Machine-Learning-Enabled Obesity Level Prediction Through Electronic Health Records,” Computer Systems Science and Engineering, vol. 46, no. 3, pp. 3715–3728, 2023.
  • [10] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: Algorithm and applications,” Future generation computer systems, vol. 97, pp. 849–872, 2019.
  • [11] X. Meng, Y. Liu, X. Gao, and H. Zhang, A new bio−inspired algorithm: chicken swarm optimization. Springer, p. 86−94.
  • [12] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm,” Comput Struct, vol. 169, pp. 1–12, 2016.
  • [13] N. Yagmur, I. Dag, and H. Temurtas, “A new computer‐aided diagnostic method for classifying anaemia disease: Hybrid use of Tree Bagger and metaheuristics,” Expert Syst, p. e13528, 2023.
  • [14] N. Yagmur, I. Dag, and H. TEMURTAŞ, “A New Computer-Aided Diagnostic Method for Classifying Anemia Disease: Hybrid Use of Tree Bagger and Metaheuristics,” Authorea Preprints, 2023.
  • [15] S.-D. H. Ö. D. T. H. DÖRTERLER, “Hybridization of k-means and meta-heuristics algorithms for heart disease diagnosis,” New Trends in Engineering and Applied Natural Sciences, p. 55, 2022.
  • [16] S. Dörterler, H. Dumlu, D. Özdemir, and H. Temurtaş, “Melezlenmiş K-means ve Diferansiyel Gelişim Algoritmaları ile Kalp Hastalığının Teşhisi,” in International Conference on Engineering and Applied Natural Sciences içinde (ss. 1840-1844). Konya, 2022.
  • [17] S. Dörterler, “Kanser Hastalığı Teşhisinde Ölüm Oyunu Optimizasyon Algoritmasının Etkisi,” Mühendislik Alanında Uluslararası Araştırmalar VIII, p. 15, 2023.
  • [18] S. Dörterler, H. Dumlu, D. Özdemir, and H. Temurtaş, “Hybridization of Meta-heuristic Algorithms with K-Means for Clustering Analysis: Case of Medical Datasets,” Gazi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, pp. 1–11.
  • [19] S. Jeon, M. Kim, J. Yoon, S. Lee, and S. Youm, “Machine learning-based obesity classification considering 3D body scanner measurements,” Sci Rep, vol. 13, no. 1, p. 3299, 2023.
  • [20] T. Turan, “Optimize Edilmiş Denetimli Öğrenme Algoritmaları ile Obezite Analizi ve Tahmini,” Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 14, no. 2, pp. 301–312.
  • [21] T. Cui, Y. Chen, J. Wang, H. Deng, and Y. Huang, “Estimation of Obesity levels based on Decision trees,” in 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM), IEEE, 2021, pp. 160–165.
  • [22] M. Gupta, T.-L. T. Phan, H. T. Bunnell, and R. Beheshti, “Obesity Prediction with EHR Data: A deep learning approach with interpretable elements,” ACM Transactions on Computing for Healthcare (HEALTH), vol. 3, no. 3, pp. 1–19, 2022.
  • [23] K. Jindal, N. Baliyan, and P. S. Rana, “Obesity prediction using ensemble machine learning approaches,” in Recent Findings in Intelligent Computing Techniques: Proceedings of the 5th ICACNI 2017, Volume 2, Springer, 2018, pp. 355–362.
  • [24] E. De-La-Hoz-Correa, F. Mendoza Palechor, A. De-La-Hoz-Manotas, R. Morales Ortega, and A. B. Sánchez Hernández, “Obesity level estimation software based on decision trees,” 2019.
  • [25] F. H. Yagin et al., “Estimation of obesity levels with a trained neural Network Approach optimized by the bayesian technique,” Applied Sciences, vol. 13, no. 6, p. 3875, 2023.
  • [26] A. Clim, R. Zota, R. Constantinescu, and I. Ilie-Nemedi, “Health services in smart cities: Choosing the big data mining based decision support,” Int J Healthc Manag, vol. 13, no. 1, pp. 79–87, 2020.
  • [27] E. Şahin, D. Özdemir, and H. Temurtaş, “Multi-objective optimization of ViT architecture for efficient brain tumor classification,” Biomed Signal Process Control, vol. 91, p. 105938, 2024.
  • [28] N. Yağmur, “Anemi Hastalığı Sınıflandırmasında Karga Arama Optimizasyon Algoritması,” in Mühendislik Alanında Akademik Araştırma ve Derlemeler, 2023, pp. 291–307.
  • [29] N. Yagmur, I. Dag, and H. Temurtas, “Classification of anemia using Harris hawks optimization method and multivariate adaptive regression spline,” Neural Comput Appl, pp. 1–20, 2024.
  • [30] R.-C. Chen, C. Dewi, S.-W. Huang, and R. E. Caraka, “Selecting critical features for data classification based on machine learning methods,” J Big Data, vol. 7, no. 1, p. 52, 2020.
  • [31] S. Kilicarslan, M. Celik, and Ş. Sahin, “Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification,” Biomed Signal Process Control, vol. 63, p. 102231, 2021.
  • [32] F. M. Palechor and A. de la Hoz Manotas, “Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico,” Data Brief, vol. 25, p. 104344, 2019.
  • [33] K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study of categorical variable encoding techniques for neural network classifiers,” Int J Comput Appl, vol. 175, no. 4, pp. 7–9, 2017.
  • [34] T. Kavzoğlu and İ. Çölkesen, “Karar ağaçları ile uydu görüntülerinin sınıflandırılması,” Harita Teknolojileri Elektronik Dergisi, vol. 2, no. 1, pp. 36–45, 2010.
  • [35] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
  • [36] M. Pal and P. M. Mather, “An assessment of the effectiveness of decision tree methods for land cover classification,” Remote Sens Environ, vol. 86, no. 4, pp. 554–565, 2003.
  • [37] J. G. T. Anderson, “Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada,” Colonial Waterbirds, pp. 166–172, 1991.
  • [38] J. B. E. O’Malley and R. M. Evans, “Kleptoparasitism and associated foraging behaviors in American White Pelicans,” Colonial Waterbirds, pp. 126–129, 1983.
  • [39] W. Tuerxun, C. Xu, M. Haderbieke, L. Guo, and Z. Cheng, “A wind turbine fault classification model using broad learning system optimized by improved pelican optimization algorithm,” Machines, vol. 10, no. 5, p. 407, 2022.
  • [40] S. Kılıç, “Klinik karar vermede ROC analizi,” Journal of Mood Disorders, vol. 3, no. 3, pp. 135–140, 2013.
  • [41] F. Aydemir and S. Arslan, “A System Design with Deep Learning and IoT to Ensure Education Continuity for Post-COVID,” IEEE Transactions on Consumer Electronics, 2023.
  • [42] MATLAB, “Classification Learner.” Accessed: Jan. 04, 2024. [Online]. Available: https://www.mathworks.com/help/stats/classificationlearner-app.html
There are 42 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other)
Journal Section Research Articles
Authors

Nagihan Yağmur 0000-0002-6407-4338

Publication Date June 30, 2024
Submission Date March 6, 2024
Acceptance Date June 23, 2024
Published in Issue Year 2024 Issue: 057

Cite

IEEE N. Yağmur, “A hybrid approach to obesity level determination with decision tree and pelican optimization algorithm”, JSR-A, no. 057, pp. 97–109, June 2024, doi: 10.59313/jsr-a.1447814.