Review
BibTex RIS Cite

The golden discovery of camelina sativa: a pivotal study of ıts unique components and its multiple uses in various applications in science and industry

Year 2024, Issue: 059, 105 - 118, 31.12.2024
https://doi.org/10.59313/jsr-a.1512490

Abstract

The increase in the global population causes a rapid increase in environmental pollution and energy consumption. Countries aim to increase the use of alternative energy sources as fossil fuels are limited and not universally accessible when generating their energy. In addition, research in the biofuels industry is expanding to include research on the use of vegetable oils as fuel. Camelina serves as a perfect illustration because of its abundant nutrients. Camelina, known as Camelina sativa L. Crantz, is a member of the cruciferous family and has been grown for its valuable characteristics for many centuries. Camelina seeds contain high levels of both protein (27-32%) and oil (38-43%). Camelina oil is rich in various components like phytosterols, phenolic compounds, tocopherols, and fatty acids, with omega-3 and omega-6 being the key ones. In the field of agriculture, growing this crop is appealing because it has a brief growing period and requires little water and fertilizers. Camelina is well-suited for arid regions because of its ability to withstand dry conditions and low temperatures. Due to its economic importance and easy cultivation in recent years, Camelina has many applications such as biofuel, food, agriculture, animal feed, cosmetics, and medicine. For example, Camelina is grown in the United States and Europe as a valuable crop that can be used to replace existing fuels. Future research aims to enhance its agricultural characteristics and view it as a substitute for existing fuels. This review focuses on the camelina plant, its oil, components, and properties, as well as its use in areas such as food, biofuels, animal feed, and agrochemicals.

References

  • [1] B. Şahin et al., “Cytotoxic Effects Of Platinum Nanoparticles Obtained From Pomegranate Extract By The Green Synthesis Method On The MCF-7 Cell Line,” Colloids Surfaces B Biointerfaces., vol. 163, pp. 119-124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [2] A. Aygün, S. Özdemir, M. Gülcan, K. Cellat, and F. Şen, “Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications,” J. Pharm. Biomed. Anal., vol. 178, pp. 112970, Jan. 2020, doi: 10.1016/j.jpba.2019.112970.
  • [3] A. Aygun et al., “Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent,” J. Pharm. Biomed. Anal, vol. 179, pp. 112961, Feb. 2020, doi: 10.1016/j.jpba.2019.112961.
  • [4] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green Synthesis and Characterization of Camellia Sinensis Mediated Silver Nanoparticles for Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, pp. 123037, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123037.
  • [5] B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pcranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J. Biotechnol., vol. 260, pp. 79-83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • [6] R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, pp. 112622, Apr. 2022, doi: 10.1016/J.ENVRES.2021.112622.
  • [7] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric sensor based on biogenic nanomaterials for high sensitive detection of hydrogen peroxide and multi-metals,” Chemosphere., vol. 339, pp. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [8] Y. Kocak et al., “Eco-friendly production of platinum nanoparticles: physicochemical properties, evaluation of biological and catalytic activities,” Int. J. Environ. Sci. Technol., vol. 1, pp. 51-62, Oct. 2024, doi: 10.1007/s13762-023-05232-w.
  • [9] F. Karimi, E. E. Altuner, A. Aygun, R. Bayat, S. Rajendran, and F. Sen, “Synthesis of Silver Nanoparticles by Biogenic Methods: Characterization and Development of a Sensor Sensible to Pharmaceutical Medicine Paracetamol,” Top. Catal., vol. 9, pp. 585- 593, Oct. 2024, doi: 10.1007/s11244-023-01887-4.
  • [10] R. N. E. Tiri et al., “Environmental Energy Production and Wastewater Treatment Using Synthesized Pd Nanoparticles with Biological and Photocatalytic Activity,” Top. Catal., vol. 67, no.9, pp. 714-724, Feb. 2024, doi: 10.1007/s11244-024-01912-0.
  • [11] I. Meydan et al., “Chitosan/PVA-supported silver nanoparticles for azo dyes removal: fabrication, characterization, and assessment of antioxidant activity,” Environ. Sci. Adv., vol. 2, no. 1, pp. 129-142, Mar. 2023, doi: 10.1039/d3va00224a.
  • [12] S. Chaturvedi, A. Bhattacharya, S. K. Khare, and G. Kaushik, Camelina sativa: An Emerging Biofuel Crop, pp. 265-282. 2018. doi: 10.1007/978-3-319-58538-3_110-1.
  • [13] M. K. Walia et al., “Winter camelina seed yield and quality responses to harvest time,” Ind. Crops Prod., vol. 111, pp. 22- 29, Jan. 2018, doi: 10.1016/j.indcrop.2018.08.025.
  • [14] M. Arshad et al., “Valorization of camelina oil to biobased materials and biofuels for new industrial uses: a review,” RSC Advances. vol. 12, no. 42, pp. 22- 29, Jan. 2022. doi: 10.1039/d2ra03253h., 27230-27245.
  • [15] K. A. Mcvay and P. F. Lamb, “Camelina Production in Montana (Report),” Bull. MT200701AG, 2008.
  • [16] I. Montero-Muñoz, D. Mostaza-Colado, A. Capuano, and P. V. Mauri Ablanque, “Seed and Straw Characterization of Nine New Varieties of Camelina sativa (L.) Crantz,” Land., vol. 12, no. 2, pp. 328, Jan. 2023, doi: 10.3390/land12020328.
  • [17] B. Bakhshi, H. R. Ahmadvandi, and H. R. Fanaei, “Camelina, an adaptable oilseed crop for the warm and dried regions of Iran,” Cent. Asian J. Plant Sci. Innov., vol. 1, no. 1, pp. 39-45, Mar. 2021, doi 10.22034/CAJPSI.2021.01.05.
  • [18] R. K. Gugel and K. C. Falk, “Agronomic and seed quality evaluation of Camelina sativa in western Canada,” Can. J. Plant Sci., vol. 86, no. 4, pp. 1047–1058, Oct. 2006, doi: 10.4141/P04-081.
  • [19] M. Campbell, “Camelina- An alternative oil crop,” in Biokerosene: Status and Prospects., pp. 259-275. 2017 doi: 10.1007/978-3-662-53065-8_12.
  • [20] B. R. Moser, “Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope” Lipid Technol., vol. 22, no. 12, pp 270-273, Dec. 2010, doi: 10.1002/lite.201000068.
  • [21] D. Neupane, R. H. Lohaus, J. K. Q. Solomon, and J. C. Cushman, “Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate”, Plants., vol. 11, no. 6, pp. 131, 2022, doi: 10.3390/plants11060772.
  • [22] K. Ghamkhar, J. Croser, N. Aryamanesh, M. Campbell, N. Konkova, and C. Francis, “Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses”., Genome., vol. 53. no. 7, pp. 558-56, Jul. 2010, doi: 10.1139/G10-034.
  • [23] J. Vollmann, T. Moritz, C. Kargl, S. Baumgartner, and H. Wagentristl, “Agronomic evaluation of camelina genotypes selected for seed quality characteristics”, Ind. Crops Prod., vol. 26, no. 3, pp. 270-277, Oct. 2007, doi: 10.1016/j.indcrop.2007.03.017.
  • [24] A. Guendouz, A. Hannachi, M. Benidir, Z. E. A. Fellahi, and B. Frih, “Agro-biochemical Characterisation of Camelina sativa: A Review”, Agric. Rev., vol.43, no. 3, pp. 278-287, Oct. 2022, doi: 10.18805/ag. Rf-230.
  • [25] M. Ghidoli, E. Ponzoni, F. Araniti, D. Miglio, and R. Pilu, “Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges”, Plants., vol. 12, no. 3, pp. 118, Oct. 2023, doi: 10.3390/plants12030570.
  • [26] Y. Li and X. S. Sun, “Camelina oil derivatives and adhesion properties”, Ind. Crops Prod., vol. 30, no.73, pp. 73-80, Oct. 2015, doi: 10.1016/j.indcrop.2015.04.015.
  • [27] J. J. Delver and Z. K. Smith, “Opportunities for Camelina Meal as a Livestock Feed Ingredient, Agriculture (Switzerland)”, vol. 71, no. 3, 371-383. 2024, doi: 10.3390/agriculture14010116.
  • [28] M. Berti, R. Gesch, C. Eynck, J. Anderson, and S. Cermak, “Camelina uses, genetics, genomics, production, and management”, Ind. Crops Prod., vol. 94, no. 2016, pp. 690710, 2016, doi: 10.1016/j.indcrop.2016.09.034.
  • [29] U. Sevilmiş, M. E. Bilgili, Kahraman, S. Seydooğlu, and D. Sevilmiş, “Ketencik (Camelina sativa) Tarımı”, Uluslararası Doğu Akdeniz Tarımsal Aratırma Enstitüsü Dergi., vol. 2, no.2, pp.36-62, Dec. 2016, pp. 2019.
  • [30] G. A. Mulligan,” Weedy introduced mustards (Brassicaceae) of Canada,Can. Field-Naturalist”, Mar. 2004, doi: 10.5962/p.363514.
  • [31] M. Ghidoli, M. Pesenti, F. Colombo, F. F. Nocito, R. Pilu, and F. Araniti, “Camelina sativa (L.) Crantz as a Promising Cover Crop Species with Allelopathic Potential”, Agronomy., vol. 13, no.8, pp. 2187, Jun. 2023, doi: 10.3390/agronomy13082187.
  • [32] M. Mondor and A. J. Hernández-Álvarez, “Camelina sativa Composition, Attributes, and Applications: A Review,” European Journal of Lipid Science and Technology., vol. 124, no. 3, pp. 2100035, Aug.2022, doi: 10.1002/ejlt.202100035.
  • [33] W. F. Schillinger, D. J. Wysocki, T. G. Chastain, S. O. Guy, and R. S. Karow, “Camelina: Planting date and method effects on stand establishment and seed yield”, F. Crop. Res., vol. 130, no. 138, pp. 138-144, Mar. 2012, doi: 10.1016/j.fcr.2012.02.019.
  • [34] F. M. Ibrahim and S. F. El Habbasha, “Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa): Review”, Int. J. PharmTech Res., vol. 8, no. 10, pp. 114-122.2015.
  • [35] F. Zanetti et al., “Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review”, Agronomy for Sustainable Development., vol. 41, no. 2, pp. 1-18, Jan. 2021, doi: 10.1007/s13593-020-00663-y.
  • [36] A. Obour K, “Oilseed Camelina (Camelina sativa L Crantz): Production Systems, Prospects and Challenges in the USA Great Plains”, Adv. Plants Agric. Res., vol. 2, no. 2, pp. 1-10, Mar. 2015, doi: 10.15406/apar.2015.02.00043.
  • [37] U. Iskandarov, H. J. Kim, and E. B. Cahoon, “Camelina: An emerging oilseed platform for advanced biofuels and bio-based materials”, in Plants and BioEnergy., vol. 41, no. 2, pp. 1-18, Jan. 2014. doi: 10.1007/978-1-4614-9329-7_8.
  • [38] J. Zubr and B. “Matthaus, Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil”, Ind. Crops Prod., vol. 15, no. 2, pp. 155-162, Mar. 2002, doi: 10.1016/S0926-6690(01)00106-6.
  • [39] D. Kurasiak-Popowska, B. Rynska, and K. Stuper-Szablewska, “Analysis of distribution of selected bioactive compounds in camelina sativa from seeds to pomace and oil,” Agronomy., vol. 9, no. 4, pp. 168, Feb. 2019, doi: 10.3390/agronomy9040168.
  • [40] R. Kirakosyan, I. Kapristova, and E. Kalashnikova, “Influence of coherent light on seed quality of Camelina sativa L”, in BIO Web of Conferences., vol. 9, pp. 00065, Nov. 2020, doi: 10.1051/bioconf/20202700065.
  • [41] B. L. Allen, M. F. Vigil, and J. D. Jabro, “Camelina growing degree hour and base temperature requirements”, Agron. J., vol. 106, no. 3, pp. 940-944, May. 2014, doi: 10.2134/agronj13.0469.
  • [42] J. Zubr, “Dietary fatty acids and amino acids of Camelina sativa seed”, J. Food Qual., vol. 26, no. 6, pp. 451-462, May. 2007, doi: 10.1111/j.1745-4557.2003.tb00260.x.
  • [43] Z. Mozhgan and Z. Ergun, “The Effect of Storage Temperature on the Composition of Fatty Acids in Crimson Sweet (Citrullus lanatus var. lanatus) Watermelon Cultivar Seeds”, Iğdır Üniversitesi Fen Bilim. Enstitüsü Dergi., vol. 11, no. 2, pp. 839-845, May. 2021, doi: 10.21597/jist.830878. 11.2: 839-845
  • [44] M. Berti, R. Wilckens, S. Fischer, A. Solis, and B. Johnson, “Seeding date influence on camelina seed yield, yield components, and oil content in Chile”, Ind. Crops Prod., vol. 26, no. 6, pp. 451-462, Jun. 2011, doi: 10.1016/j.indcrop.2010.12.008.
  • [45] L. G. Angelini, L. A. Chehade, L. Foschi, and S. Tavarini, “Performance and potentiality of camelina (Camelina sativa L. Crantz) genotypes in response to sowing date under mediterranean environment”, Agronomy., vol. 10, no. 12, pp. 1929, Nov. 2021, doi: 10.3390/agronomy10121929.
  • [46] F. Angelopoulou et al., “Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient”, Appl. Sci., vol. 13, no. 6, pp. 3759, Feb. 2023, doi: 10.3390/app13063759.
  • [47] A. Solis, I. Vidal, L. Paulino, B. L. Johnson, and M. T. Berti, “Camelina seed yield response to nitrogen, sulfur, and phosphorus fertiliser in South Central Chile,” Ind. Crops Prod., vol. 44, pp. 132-138, Jan. 2013, doi: 10.1016/j.indcrop.2012.11.005.
  • [48] K. J. Jankowski, M. Sokólski, and B. Kordan, “Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland”, Ind. Crops Prod., vol. 141, pp. 111776, Dec. 2019, doi: 10.1016/j.indcrop.2019.111776.
  • [49] S. S. Malhi, E. N. Johnson, L. M. Hall, W. E. May, S. Phelps, and B. Nybo, “Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa”, Can. J. Soil Sci., vol. 94, no. 1, pp. 35-47, Dec. 2014, doi: 10.4141/CJSS2012-086.
  • [50] R. Riaz, I. Ahmed, O. Sizmaz, and U. Ahsan, “Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review”, Animals., vol. 12, no. 9, pp. 1082, Apr. 2022. doi: 10.3390/ani12091082.
  • [51] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, “Environmental and Health Impacts of Air Pollution: A Review”, Frontiers in Public Health., vol. 8, no.14, Feb.2020, doi: 10.3389/fpubh.2020.00014.
  • [52] N. L. Panwar, S. C. Kaushik, and S. Kothari, “Role of renewable energy sources in environmental protection: A review”, Renewable and Sustainable Energy Reviews., vol. 15, no. 3, pp. 1513-1524, Apr. 2011, doi: 10.1016/j.rser.2010.11.037.
  • [53] R. Zahedi, A. Zahedi, and A. Ahmadi, “Strategic Study for Renewable Energy Policy, Optimizations and Sustainability in Iran,” Sustainability., vol. 14, no. 4, pp. 2418, Feb. 2022, doi: 10.3390/su14042418.
  • [54] Ý. Ekin, “Quality and composition of lipids used in biodiesel production and methods of transesterification: A review”, Int. J. Chem. Technol., vol. 3, no. 2, pp. 77-91, Dec. 2019, doi: 10.32571/ijct.623165.
  • [55] R. Sawangkeaw and S. Ngamprasertsith, “A review of lipid-based biomasses as feedstocks for biofuels production”, Renewable and Sustainable Energy Reviews., vol. 25, pp. 97-108, Sep. 2013, doi: 10.1016/j.rser.2013.04.007.
  • [56] O. S. Stamenkoviæ et al., “Biodiesel production from camelina oil: Present status and future perspectives”, Food and Energy Security., vol. 12, no. 1, pp. 340, Nov. 2023, doi: 10.1002/fes3.340.
  • [57] B. R. Moser and S. F. Vaughn, “Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel”, Bioresour. Technol., vol. 101, no.2, pp. 646-653, Jan. 2010, doi: 10.1016/j.biortech.2009.08.054.
  • [58] A. Bernardo et al., “Camelina oil as a fuel for diesel transport engines,” Ind. Crops Prod., vol. 17, no. 3, pp. 191-197, May. 2003, doi: 10.1016/S0926-6690(02)00098-5.
  • [59] Şahin, S “, Determination of Some Physicochemical Properties of Camelina Biodiesel Blends with Different Alcohols”, MAS Journal of Applied Sciences., vol.9, no. 1, pp. 43-99, Mar.2024, doi: org/10.5281/zenodo.10613853.
  • [60] Y. Sun et al., “Transesterification of camelina sativa oil with supercritical alcohol mixtures”, Energy Convers. Manag., vol. 101, pp. 402-409, Sep. 2015, doi: 10.1016/j.enconman.2015.05.056.
  • [61] A. L. Duly, J. A. Harris, A. M. Khatchadourian, R. T. Ulics, and M. C. Wolter, “Price and expenditure measures of petroleum products: A comparison,” Mon. Labor Rev., vol. 129, pp. 56. 2006.
  • [62] J. Shila and M. E. Johnson, “Techno-economic analysis of Camelina-derived hydroprocessed renewable jet fuel within the US context,” Appl. Energy, vol. 287, pp. 116525, Jan. 2021, doi: 10.1016/j.apenergy.2021.116525.
  • [63] J. Zubr, “Oil-seed crop: Camelina sativa”, Ind. Crops Prod., vol. 6, no. 2, pp. 113-119, May. 1997, doi: 10.1016/S0926-6690(96)00203-8.
  • [64] D. R. Shonnard, L. Williams, and T. N. Kalnes, “Camelina-derived jet fuel and diesel: Sustainable advanced biofuels”, Environ. Prog. Sustain. Energy., vol. 29, no. 3, pp. 382-392, Sep. 2010, doi: 10.1002/ep.10461.
  • [65] C. D. Klingshirn et al., “Hydroprocessed renewable jet fuel evaluation, performance, and emissions in a T63 turbine engine”, J. Eng. Gas Turbines Power., vol. 134, no.5, pp. 8, May. 2012, doi: 10.1115/1.4004841.
  • [66] R. H. Sundararaj et al., “Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor”, Energy., vol. 182, pp. 689-705, Sep. 2019, doi: 10.1016/j.energy.2019.06.060.
  • [67] K. Lokesh, V. Sethi, T. Nikolaidis, E. Goodger, and D. Nalianda, “Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance”, Biomass and Bioenergy., vol. 77, pp. 26-44, Jun. 2015, doi: 10.1016/j.biombioe.2015.03.005.
  • [68] S. Chen, Y. Chen, Z. Wang, H. Chen, and D. Fan, “Renewable bio-based adhesive fabricated from a novel biopolymer and soy protein”, RSC Adv., vol. 11, no.19, pp. 11724-11731, Nov. 2021, doi: 10.1039/d1ra00766a.
  • [69] D. M. Fitzgerald, Y. L. Colson, and M. W. Grinstaff, “Synthetic pressure sensitive adhesives for biomedical applications”, Progress in Polymer Science., vol. 142, pp. 101692, Jul. 2023, doi: 10.1016/j.progpolymsci.2023.101692.
  • [70] H. Nosal, J. Nowicki, M. Warzaa, E. Nowakowska-Bogdan, and M. Zarêbska, “Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol”, Prog. Org. Coatings., vol. 86, pp. 59-70, Sep. 2015, doi: 10.1016/j.porgcoat.2015.04.009.
  • [71] S. Tavarini, M. De Leo, R. Matteo, L. Lazzeri, A. Braca, and L. G. Angelini, “Flaxseed and camelina meals as potential sources of health-beneficial compounds”, Plants., vol. 10, no. 1, pp.156, Jan. 2021, doi: 10.3390/plants10010156.
  • [72] N. Codina-Pascual, J. Torra, B. Baraibar, and A. Royo-Esnal, “Weed suppression capacity of camelina (Camelina sativa) against winter weeds: The example of corn-poppy (Papaver rhoeas)”, Ind. Crops Prod., vol. 184, pp. 115063, Sep. 2022, doi: 10.1016/j.indcrop.2022.115063.
  • [73] S. Tavarini et al., “Evaluation of chemical composition of two linseed varieties as sources of health-beneficial substances”, Molecules., vol. 24, no. 20, pp. 3729, Oct. 2019, doi: 10.3390/molecules24203729.
  • [74] A. Majeed, "Application of Agrochemicals in Agriculture: Benefits, Risks and Responsibility of Stakeholders, Cit. Majeed A J Food Sci Toxicol., vol. 2, no.1, pp. 3, Jan. 2018.
  • [75] M. S. Ayilara et al., “Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides”, Frontiers in Microbiology., vol. 14, pp. 1040901, Feb. 2023. doi: 10.3389/fmicb.2023.1040901.
  • [76] J. Pernak et al., “Ammonium bio-ionic liquids based on camelina oil as potential novel agrochemicals”, RSC Adv., vol. 8, pp. 28676-28683, Agu.2018, doi: 10.1039/c8ra03519a.
  • [77] A. Abbas et al., “Application of allelopathic phenomena to enhance growth and production of camelina (Camelina sativa (L.))”, Appl. Ecol. Environ. Res., vol. 19, no. 1, pp. 453-469, Jul. 2021, doi: 10.15666/aeer/1901_453469.
  • [78] M. aepanovia et al., “Inhibitory effects of brassicaceae cover crop on ambrosia artemisiifolia germination and early growth”, Plants., vol. 10, no.9, pp. 28676-28683, Agu. 2021, doi: 10.3390/plants10040794.
  • [79] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges”, Renewable and Sustainable Energy Reviews., vol. 146, pp. 111180, Agu. 2021. doi: 10.1016/j.rser.2021.111180.
  • [80] P. Trumbo, S. Schlicker, A. A. Yates, and M. Poos, “Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids”, J. Am. Diet. Assoc., vol. 102, no. 11, pp. 1621-1631, Nov. 2002, doi: 10.1016/S0002-8223(02)90346-9.
  • [81] V. Musazadeh, P. Dehghan, and S. Azadmard-Damirchi, “Effectiveness of Co-Administration of Camelina Oil and Caloric Restriction on Cardiometabolic Risk Factors, Liver Function and Mental Health in Patients with Non-Alcoholic Fatty Liver Disease: A Blinded Randomized Controlled Trial Protocol”, J. Nutr. Food Secur., vol. 7, no. 3, pp. 379-387. 2022, doi: 10.18502/jnfs. v7i3.10204.
  • [82] D. Kurasiak-Popowska and K. Stuper-Szablewska, “The phytochemical quality of Camelina sativa seed and oil”, Acta Agric. Scand. Sect. B Soil Plant Sci., vol. 70, no. 1, pp. 39-47, May. 2020, doi: 10.1080/09064710.2019.1665706.
  • [83] J. Rode, “Study of autochthon Camelina sativa (L.) Crantz in Slovenia”, J. Herbs, Spices Med. Plants., vol. 9, no. 4, pp. 313-318, Oct. 2002, doi: 10.1300/J044v09n04_08.
  • [84] H. M. Karvonen, A. Aro, N. S. Tapola, I. Salminen, M. I. J. Uusitupa, and E. S. Sarkkinen, “Effect of á-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects”, Metabolism., vol. 51, no. 10, pp. 1253-1260, Oct. 2002, doi: 10.1053/meta.2002.35183.
  • [85] H. Abramovie and V. Abram, “Physico-chemical properties, composition and oxidative stability of camelina sativa oil, Food Technol”. Biotechnol., vol. 43, no .1, pp. 63-70, Sep. 2005.
  • [86] J. Zubr, “Carbohydrates, vitamins and minerals of Camelina sativa seed”, Nutr. Food Sci., vol. 40, no. 5, pp. 523-531, Sep. 2010, doi: 10.1108/00346651011077036.
  • [87] V. L. N. Brandao et al., “Effects of replacing canola meal with solvent-extracted camelina meal on microbial fermentation in a dual-flow continuous culture system”, J. Dairy Sci., vol. 101, no. 10, pp. 9028-9040, Oct. 2018, doi: 10.3168/jds.2018-14826.
  • [88] Hajiazizi, F., Sadeghi, A., & Ibrahim, S. (2024). Camelina sativa (L. Crantz) products; an alternative feed ingredient for poultry diets with its nutritional and physiological consequences. Tropical Animal Health and Production, 56(2), 59.
  • [89] Anca, G., Hăbeanu, M., Lefter, N. A., & Ropotă, M. (2019). Performance parameters, plasma lipid status, and lymphoid tissue fatty acid profile of broiler chicks fed camelina cake. Brazilian Journal of Poultry Science, 21, eRBCA-2019.
  • [90] P. Moriel et al., “Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers”, J. Anim. Sci., vol. 89, no. 12, pp. 4314-4324, Dec. 2011, doi: 10.2527/jas.2010-3630.
  • [91] E. M. Paula, L. G. da Silva, V. L. N. Brandao, X. Dai, and A. P. “Faciola, Feeding canola, camelina, and carinata meals to ruminants”, Animals., vol. 9, no. 10, pp. 704, Agu. 2019, doi: 10.3390/ani9100704.
  • [92] M. A. Rahim et al., “Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification”, Molecules., vol. 28, no. 19, 6881, Sep. 2023, doi: 10.3390/molecules28196881.
  • [93] J. M. Song et al., “Oil plant genomes: current state of the science”, Journal of Experimental Botany., vol. 73, no. 9, pp. 2859-2874, May. 2022, doi: 10.1093/jxb/erab472.
  • [94] R. Juodka et al., “Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids”, Animals., vol. 12, no. 3, pp. 295, Jan. 2022, doi: 10.3390/ani12030295.
  • [95] A. Y. Pekel, J. I. Kim, C. Chapple, and O. Adeola, “Nutritional characteristics of camelina meal for 3-week-old broiler chickens”, Poult. Sci., vol. 94, no. 3, pp. 371-378, Mar. 2015, doi: 10.3382/ps/peu066.
  • [96] R. K. Kahindi, T. A. Woyengo, P. A. Thacker, and C. M. Nyachoti, “Energy and amino acid digestibility of camelina cake fed to growing pigs”, Anim. Feed Sci. Technol., vol. 193, pp. 93-101, Jul. 2014, doi: 10.1016/j.anifeedsci.2014.03.012.
  • [97] F. N. Almeida, J. K. Htoo, J. Thomson, and H. H. Stein, “Amino acid digestibility in camelina products fed to growing pigs”, Can. J. Anim. Sci., vol. 93, no. 3, pp. 335-343, Agu. 2013, doi: 10.4141/CJAS2012-134.
  • [98] T. A. Woyengo, R. Patterson, B. A. Slominski, E. Beltranena, and R. T. Zijlstra, “Nutritive value of cold-pressed camelina cake with or without supplementation of multi-enzyme in broiler chickens”, Poult. Sci., vol. 95, no. 10, pp. 2314-2321, Oct. 2016, doi: 10.3382/ps/pew098.
  • [99] Ș. L. Bãtrîna et al., “Camelina sativa: A study on amino acid content”, Rom Biotechnol Lett, vol. 25, no. 1, pp. 1136 -1142, Jul. 2020, doi: 10.25083/rbl/25.1/1136.1142.
  • [100] J. Zubr, “Camelina oil in human nutrition”, Agro Food Ind. Hi. Tech., vol. 20, no. 4, pp. 22-28. 2009.
  • [101] C. Hurtaud and J. L. Peyraud, “Effects of feeding camelina (seeds or meal) on milk fatty acid composition and butter spreadability”, J. Dairy Sci., vol. 90, no. 11, pp. 5134-5145, Nov. 2007, doi: 10.3168/jds.2007-0031.
  • [102] C. Christodoulou et al., “Assessing the optimum level of supplementation with camelina seeds in ewes diets to improve milk quality”, Foods., vol. 10, no. 9, pp. 2076, Agu. 2021, doi: 10.3390/foods10092076.
  • [103] Z. Piravi-vanak et al., “Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran”, J. Mol. Liq., vol. 345, pp. 117043, Jan. 2022, doi: 10.1016/j.molliq.2021.117043.
  • [104] H. R. Ahmadvandi, A. Zeinodini, R. Ghobadi, and M. Gore, “Benefits of Adding Camelina to Rainfed Crop Rotation in Iran: A Crop with High Drought Tolerance”, Agrotechniques Ind. Crop., vol. 1, no. 2, pp. 91-96, Jun. 2021, doi: 10.22126/atic.2021.6410.1007
  • [105] P. G. Ergönül and Z. A. Özbek, “Cold pressed camelina (Camelina sativa L.) seed oil, in Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications., pp. 28676-28683. 2020, doi: 10.1016/B978-0-12-818188-1.00021-9.
  • [106] M. Raczyk, E. Popis, B. Kruszewski, K. Ratusz, and M. Rudziñska, “Physicochemical quality and oxidative stability of linseed (Linum usitatissimum) and camelina (Camelina sativa) cold-pressed oils from retail outlets”, Eur. J. Lipid Sci. Technol., vol. 118, no. 5, pp. 834-839, Jul. 2016, doi: 10.1002/ejlt.201500064.
  • [107] X. Wu and D. Y. C. Leung, “Optimization of biodiesel production from camelina oil using orthogonal experiment”, Appl. Energy., vol. 88, no. 11, pp. 3615-3624, Nov. 2011, doi: 10.1016/j.apenergy.2011.04.041.
  • [108] J. Yang, C. Caldwell, K. Corscadden, Q. S. He, and J. Li, “An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia”, Ind. Crops Prod., vol. 81, pp. 162-168, Mar. 2016, doi: 10.1016/j.indcrop.2015.11.073.
  • [109] N. Mikoajczak, M. Tañska, and D. Ogrodowska, “Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability”, Trends in Food Science and Technology., vol. 113, pp. 110-138, Jul. 2021, doi: 10.1016/j.tifs.2021.04.046.
  • [110] Y. Kocak et al., “Microwave-Assisted Fabrication of AgRuNi Trimetallic NPs with Their Antibacterial vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants”, Bionanoscience., vol. 14, no. 1, pp. 93-101, Nov. 2024, doi: 10.1007/s12668-023-01237-4.
  • [111] B. Matthäus, “Antioxidant activity of extracts obtained from residues of different oilseeds”, J. Agric. Food Chem., vol. 50, no. 12, pp. 3444-3452, May. 2002, doi: 10.1021/jf011440s.
  • [112] P. Terpinc, T. Polak, D. Makuc, N. P. Ulrih, and H. Abramoviè, “The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil”, Food Chem., vol. 131, no. 2, pp. 580-589, Mar. 2012, doi: 10.1016/j.foodchem.2011.09.033.
  • [113] H. Abramoviè, B. Butinar, and V. Nikoliè, “Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage”, Food Chem., vol. 104, no. 3, pp. 903-909. 2007, doi: 10.1016/j.foodchem.2006.12.044.
  • [114] H. Salminen, M. Estévez, R. Kivikari, and M. Heinonen, “Inhibition of protein and lipid oxidation by rapeseed, camelina and soy meal in cooked pork meat patties”, Eur. Food Res. Technol., vol. 223, pp. 461-468, Jan. 2006, doi: 10.1007/s00217-005-0225-5.
  • [115] M. Zajc, B. Kiczorowska, W. Samoliñska, and R. Klebaniuk, “Inclusion of camelina, flax, and sunflower seeds in the diets for broiler chickens: Apparent digestibility of nutrients, growth performance, health status, and carcass and meat quality traits”, Animals., vol. 10, no. 2, pp. 321, Feb. 2020, doi: 10.3390/ani10020321.
  • [116] R. Russo and R. Reggiani, “Antinutritive Compounds in Twelve Camelina sativa Genotypes”, Am. J. Plant Sci., vol. 3, no. 10, pp. 4, Jul. 2012, doi: 10.4236/ajps.2012.310170.
Year 2024, Issue: 059, 105 - 118, 31.12.2024
https://doi.org/10.59313/jsr-a.1512490

Abstract

References

  • [1] B. Şahin et al., “Cytotoxic Effects Of Platinum Nanoparticles Obtained From Pomegranate Extract By The Green Synthesis Method On The MCF-7 Cell Line,” Colloids Surfaces B Biointerfaces., vol. 163, pp. 119-124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [2] A. Aygün, S. Özdemir, M. Gülcan, K. Cellat, and F. Şen, “Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications,” J. Pharm. Biomed. Anal., vol. 178, pp. 112970, Jan. 2020, doi: 10.1016/j.jpba.2019.112970.
  • [3] A. Aygun et al., “Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent,” J. Pharm. Biomed. Anal, vol. 179, pp. 112961, Feb. 2020, doi: 10.1016/j.jpba.2019.112961.
  • [4] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green Synthesis and Characterization of Camellia Sinensis Mediated Silver Nanoparticles for Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, pp. 123037, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123037.
  • [5] B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pcranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J. Biotechnol., vol. 260, pp. 79-83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • [6] R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, pp. 112622, Apr. 2022, doi: 10.1016/J.ENVRES.2021.112622.
  • [7] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric sensor based on biogenic nanomaterials for high sensitive detection of hydrogen peroxide and multi-metals,” Chemosphere., vol. 339, pp. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [8] Y. Kocak et al., “Eco-friendly production of platinum nanoparticles: physicochemical properties, evaluation of biological and catalytic activities,” Int. J. Environ. Sci. Technol., vol. 1, pp. 51-62, Oct. 2024, doi: 10.1007/s13762-023-05232-w.
  • [9] F. Karimi, E. E. Altuner, A. Aygun, R. Bayat, S. Rajendran, and F. Sen, “Synthesis of Silver Nanoparticles by Biogenic Methods: Characterization and Development of a Sensor Sensible to Pharmaceutical Medicine Paracetamol,” Top. Catal., vol. 9, pp. 585- 593, Oct. 2024, doi: 10.1007/s11244-023-01887-4.
  • [10] R. N. E. Tiri et al., “Environmental Energy Production and Wastewater Treatment Using Synthesized Pd Nanoparticles with Biological and Photocatalytic Activity,” Top. Catal., vol. 67, no.9, pp. 714-724, Feb. 2024, doi: 10.1007/s11244-024-01912-0.
  • [11] I. Meydan et al., “Chitosan/PVA-supported silver nanoparticles for azo dyes removal: fabrication, characterization, and assessment of antioxidant activity,” Environ. Sci. Adv., vol. 2, no. 1, pp. 129-142, Mar. 2023, doi: 10.1039/d3va00224a.
  • [12] S. Chaturvedi, A. Bhattacharya, S. K. Khare, and G. Kaushik, Camelina sativa: An Emerging Biofuel Crop, pp. 265-282. 2018. doi: 10.1007/978-3-319-58538-3_110-1.
  • [13] M. K. Walia et al., “Winter camelina seed yield and quality responses to harvest time,” Ind. Crops Prod., vol. 111, pp. 22- 29, Jan. 2018, doi: 10.1016/j.indcrop.2018.08.025.
  • [14] M. Arshad et al., “Valorization of camelina oil to biobased materials and biofuels for new industrial uses: a review,” RSC Advances. vol. 12, no. 42, pp. 22- 29, Jan. 2022. doi: 10.1039/d2ra03253h., 27230-27245.
  • [15] K. A. Mcvay and P. F. Lamb, “Camelina Production in Montana (Report),” Bull. MT200701AG, 2008.
  • [16] I. Montero-Muñoz, D. Mostaza-Colado, A. Capuano, and P. V. Mauri Ablanque, “Seed and Straw Characterization of Nine New Varieties of Camelina sativa (L.) Crantz,” Land., vol. 12, no. 2, pp. 328, Jan. 2023, doi: 10.3390/land12020328.
  • [17] B. Bakhshi, H. R. Ahmadvandi, and H. R. Fanaei, “Camelina, an adaptable oilseed crop for the warm and dried regions of Iran,” Cent. Asian J. Plant Sci. Innov., vol. 1, no. 1, pp. 39-45, Mar. 2021, doi 10.22034/CAJPSI.2021.01.05.
  • [18] R. K. Gugel and K. C. Falk, “Agronomic and seed quality evaluation of Camelina sativa in western Canada,” Can. J. Plant Sci., vol. 86, no. 4, pp. 1047–1058, Oct. 2006, doi: 10.4141/P04-081.
  • [19] M. Campbell, “Camelina- An alternative oil crop,” in Biokerosene: Status and Prospects., pp. 259-275. 2017 doi: 10.1007/978-3-662-53065-8_12.
  • [20] B. R. Moser, “Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope” Lipid Technol., vol. 22, no. 12, pp 270-273, Dec. 2010, doi: 10.1002/lite.201000068.
  • [21] D. Neupane, R. H. Lohaus, J. K. Q. Solomon, and J. C. Cushman, “Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate”, Plants., vol. 11, no. 6, pp. 131, 2022, doi: 10.3390/plants11060772.
  • [22] K. Ghamkhar, J. Croser, N. Aryamanesh, M. Campbell, N. Konkova, and C. Francis, “Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses”., Genome., vol. 53. no. 7, pp. 558-56, Jul. 2010, doi: 10.1139/G10-034.
  • [23] J. Vollmann, T. Moritz, C. Kargl, S. Baumgartner, and H. Wagentristl, “Agronomic evaluation of camelina genotypes selected for seed quality characteristics”, Ind. Crops Prod., vol. 26, no. 3, pp. 270-277, Oct. 2007, doi: 10.1016/j.indcrop.2007.03.017.
  • [24] A. Guendouz, A. Hannachi, M. Benidir, Z. E. A. Fellahi, and B. Frih, “Agro-biochemical Characterisation of Camelina sativa: A Review”, Agric. Rev., vol.43, no. 3, pp. 278-287, Oct. 2022, doi: 10.18805/ag. Rf-230.
  • [25] M. Ghidoli, E. Ponzoni, F. Araniti, D. Miglio, and R. Pilu, “Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges”, Plants., vol. 12, no. 3, pp. 118, Oct. 2023, doi: 10.3390/plants12030570.
  • [26] Y. Li and X. S. Sun, “Camelina oil derivatives and adhesion properties”, Ind. Crops Prod., vol. 30, no.73, pp. 73-80, Oct. 2015, doi: 10.1016/j.indcrop.2015.04.015.
  • [27] J. J. Delver and Z. K. Smith, “Opportunities for Camelina Meal as a Livestock Feed Ingredient, Agriculture (Switzerland)”, vol. 71, no. 3, 371-383. 2024, doi: 10.3390/agriculture14010116.
  • [28] M. Berti, R. Gesch, C. Eynck, J. Anderson, and S. Cermak, “Camelina uses, genetics, genomics, production, and management”, Ind. Crops Prod., vol. 94, no. 2016, pp. 690710, 2016, doi: 10.1016/j.indcrop.2016.09.034.
  • [29] U. Sevilmiş, M. E. Bilgili, Kahraman, S. Seydooğlu, and D. Sevilmiş, “Ketencik (Camelina sativa) Tarımı”, Uluslararası Doğu Akdeniz Tarımsal Aratırma Enstitüsü Dergi., vol. 2, no.2, pp.36-62, Dec. 2016, pp. 2019.
  • [30] G. A. Mulligan,” Weedy introduced mustards (Brassicaceae) of Canada,Can. Field-Naturalist”, Mar. 2004, doi: 10.5962/p.363514.
  • [31] M. Ghidoli, M. Pesenti, F. Colombo, F. F. Nocito, R. Pilu, and F. Araniti, “Camelina sativa (L.) Crantz as a Promising Cover Crop Species with Allelopathic Potential”, Agronomy., vol. 13, no.8, pp. 2187, Jun. 2023, doi: 10.3390/agronomy13082187.
  • [32] M. Mondor and A. J. Hernández-Álvarez, “Camelina sativa Composition, Attributes, and Applications: A Review,” European Journal of Lipid Science and Technology., vol. 124, no. 3, pp. 2100035, Aug.2022, doi: 10.1002/ejlt.202100035.
  • [33] W. F. Schillinger, D. J. Wysocki, T. G. Chastain, S. O. Guy, and R. S. Karow, “Camelina: Planting date and method effects on stand establishment and seed yield”, F. Crop. Res., vol. 130, no. 138, pp. 138-144, Mar. 2012, doi: 10.1016/j.fcr.2012.02.019.
  • [34] F. M. Ibrahim and S. F. El Habbasha, “Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa): Review”, Int. J. PharmTech Res., vol. 8, no. 10, pp. 114-122.2015.
  • [35] F. Zanetti et al., “Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review”, Agronomy for Sustainable Development., vol. 41, no. 2, pp. 1-18, Jan. 2021, doi: 10.1007/s13593-020-00663-y.
  • [36] A. Obour K, “Oilseed Camelina (Camelina sativa L Crantz): Production Systems, Prospects and Challenges in the USA Great Plains”, Adv. Plants Agric. Res., vol. 2, no. 2, pp. 1-10, Mar. 2015, doi: 10.15406/apar.2015.02.00043.
  • [37] U. Iskandarov, H. J. Kim, and E. B. Cahoon, “Camelina: An emerging oilseed platform for advanced biofuels and bio-based materials”, in Plants and BioEnergy., vol. 41, no. 2, pp. 1-18, Jan. 2014. doi: 10.1007/978-1-4614-9329-7_8.
  • [38] J. Zubr and B. “Matthaus, Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil”, Ind. Crops Prod., vol. 15, no. 2, pp. 155-162, Mar. 2002, doi: 10.1016/S0926-6690(01)00106-6.
  • [39] D. Kurasiak-Popowska, B. Rynska, and K. Stuper-Szablewska, “Analysis of distribution of selected bioactive compounds in camelina sativa from seeds to pomace and oil,” Agronomy., vol. 9, no. 4, pp. 168, Feb. 2019, doi: 10.3390/agronomy9040168.
  • [40] R. Kirakosyan, I. Kapristova, and E. Kalashnikova, “Influence of coherent light on seed quality of Camelina sativa L”, in BIO Web of Conferences., vol. 9, pp. 00065, Nov. 2020, doi: 10.1051/bioconf/20202700065.
  • [41] B. L. Allen, M. F. Vigil, and J. D. Jabro, “Camelina growing degree hour and base temperature requirements”, Agron. J., vol. 106, no. 3, pp. 940-944, May. 2014, doi: 10.2134/agronj13.0469.
  • [42] J. Zubr, “Dietary fatty acids and amino acids of Camelina sativa seed”, J. Food Qual., vol. 26, no. 6, pp. 451-462, May. 2007, doi: 10.1111/j.1745-4557.2003.tb00260.x.
  • [43] Z. Mozhgan and Z. Ergun, “The Effect of Storage Temperature on the Composition of Fatty Acids in Crimson Sweet (Citrullus lanatus var. lanatus) Watermelon Cultivar Seeds”, Iğdır Üniversitesi Fen Bilim. Enstitüsü Dergi., vol. 11, no. 2, pp. 839-845, May. 2021, doi: 10.21597/jist.830878. 11.2: 839-845
  • [44] M. Berti, R. Wilckens, S. Fischer, A. Solis, and B. Johnson, “Seeding date influence on camelina seed yield, yield components, and oil content in Chile”, Ind. Crops Prod., vol. 26, no. 6, pp. 451-462, Jun. 2011, doi: 10.1016/j.indcrop.2010.12.008.
  • [45] L. G. Angelini, L. A. Chehade, L. Foschi, and S. Tavarini, “Performance and potentiality of camelina (Camelina sativa L. Crantz) genotypes in response to sowing date under mediterranean environment”, Agronomy., vol. 10, no. 12, pp. 1929, Nov. 2021, doi: 10.3390/agronomy10121929.
  • [46] F. Angelopoulou et al., “Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient”, Appl. Sci., vol. 13, no. 6, pp. 3759, Feb. 2023, doi: 10.3390/app13063759.
  • [47] A. Solis, I. Vidal, L. Paulino, B. L. Johnson, and M. T. Berti, “Camelina seed yield response to nitrogen, sulfur, and phosphorus fertiliser in South Central Chile,” Ind. Crops Prod., vol. 44, pp. 132-138, Jan. 2013, doi: 10.1016/j.indcrop.2012.11.005.
  • [48] K. J. Jankowski, M. Sokólski, and B. Kordan, “Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland”, Ind. Crops Prod., vol. 141, pp. 111776, Dec. 2019, doi: 10.1016/j.indcrop.2019.111776.
  • [49] S. S. Malhi, E. N. Johnson, L. M. Hall, W. E. May, S. Phelps, and B. Nybo, “Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa”, Can. J. Soil Sci., vol. 94, no. 1, pp. 35-47, Dec. 2014, doi: 10.4141/CJSS2012-086.
  • [50] R. Riaz, I. Ahmed, O. Sizmaz, and U. Ahsan, “Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review”, Animals., vol. 12, no. 9, pp. 1082, Apr. 2022. doi: 10.3390/ani12091082.
  • [51] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, “Environmental and Health Impacts of Air Pollution: A Review”, Frontiers in Public Health., vol. 8, no.14, Feb.2020, doi: 10.3389/fpubh.2020.00014.
  • [52] N. L. Panwar, S. C. Kaushik, and S. Kothari, “Role of renewable energy sources in environmental protection: A review”, Renewable and Sustainable Energy Reviews., vol. 15, no. 3, pp. 1513-1524, Apr. 2011, doi: 10.1016/j.rser.2010.11.037.
  • [53] R. Zahedi, A. Zahedi, and A. Ahmadi, “Strategic Study for Renewable Energy Policy, Optimizations and Sustainability in Iran,” Sustainability., vol. 14, no. 4, pp. 2418, Feb. 2022, doi: 10.3390/su14042418.
  • [54] Ý. Ekin, “Quality and composition of lipids used in biodiesel production and methods of transesterification: A review”, Int. J. Chem. Technol., vol. 3, no. 2, pp. 77-91, Dec. 2019, doi: 10.32571/ijct.623165.
  • [55] R. Sawangkeaw and S. Ngamprasertsith, “A review of lipid-based biomasses as feedstocks for biofuels production”, Renewable and Sustainable Energy Reviews., vol. 25, pp. 97-108, Sep. 2013, doi: 10.1016/j.rser.2013.04.007.
  • [56] O. S. Stamenkoviæ et al., “Biodiesel production from camelina oil: Present status and future perspectives”, Food and Energy Security., vol. 12, no. 1, pp. 340, Nov. 2023, doi: 10.1002/fes3.340.
  • [57] B. R. Moser and S. F. Vaughn, “Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel”, Bioresour. Technol., vol. 101, no.2, pp. 646-653, Jan. 2010, doi: 10.1016/j.biortech.2009.08.054.
  • [58] A. Bernardo et al., “Camelina oil as a fuel for diesel transport engines,” Ind. Crops Prod., vol. 17, no. 3, pp. 191-197, May. 2003, doi: 10.1016/S0926-6690(02)00098-5.
  • [59] Şahin, S “, Determination of Some Physicochemical Properties of Camelina Biodiesel Blends with Different Alcohols”, MAS Journal of Applied Sciences., vol.9, no. 1, pp. 43-99, Mar.2024, doi: org/10.5281/zenodo.10613853.
  • [60] Y. Sun et al., “Transesterification of camelina sativa oil with supercritical alcohol mixtures”, Energy Convers. Manag., vol. 101, pp. 402-409, Sep. 2015, doi: 10.1016/j.enconman.2015.05.056.
  • [61] A. L. Duly, J. A. Harris, A. M. Khatchadourian, R. T. Ulics, and M. C. Wolter, “Price and expenditure measures of petroleum products: A comparison,” Mon. Labor Rev., vol. 129, pp. 56. 2006.
  • [62] J. Shila and M. E. Johnson, “Techno-economic analysis of Camelina-derived hydroprocessed renewable jet fuel within the US context,” Appl. Energy, vol. 287, pp. 116525, Jan. 2021, doi: 10.1016/j.apenergy.2021.116525.
  • [63] J. Zubr, “Oil-seed crop: Camelina sativa”, Ind. Crops Prod., vol. 6, no. 2, pp. 113-119, May. 1997, doi: 10.1016/S0926-6690(96)00203-8.
  • [64] D. R. Shonnard, L. Williams, and T. N. Kalnes, “Camelina-derived jet fuel and diesel: Sustainable advanced biofuels”, Environ. Prog. Sustain. Energy., vol. 29, no. 3, pp. 382-392, Sep. 2010, doi: 10.1002/ep.10461.
  • [65] C. D. Klingshirn et al., “Hydroprocessed renewable jet fuel evaluation, performance, and emissions in a T63 turbine engine”, J. Eng. Gas Turbines Power., vol. 134, no.5, pp. 8, May. 2012, doi: 10.1115/1.4004841.
  • [66] R. H. Sundararaj et al., “Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor”, Energy., vol. 182, pp. 689-705, Sep. 2019, doi: 10.1016/j.energy.2019.06.060.
  • [67] K. Lokesh, V. Sethi, T. Nikolaidis, E. Goodger, and D. Nalianda, “Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance”, Biomass and Bioenergy., vol. 77, pp. 26-44, Jun. 2015, doi: 10.1016/j.biombioe.2015.03.005.
  • [68] S. Chen, Y. Chen, Z. Wang, H. Chen, and D. Fan, “Renewable bio-based adhesive fabricated from a novel biopolymer and soy protein”, RSC Adv., vol. 11, no.19, pp. 11724-11731, Nov. 2021, doi: 10.1039/d1ra00766a.
  • [69] D. M. Fitzgerald, Y. L. Colson, and M. W. Grinstaff, “Synthetic pressure sensitive adhesives for biomedical applications”, Progress in Polymer Science., vol. 142, pp. 101692, Jul. 2023, doi: 10.1016/j.progpolymsci.2023.101692.
  • [70] H. Nosal, J. Nowicki, M. Warzaa, E. Nowakowska-Bogdan, and M. Zarêbska, “Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol”, Prog. Org. Coatings., vol. 86, pp. 59-70, Sep. 2015, doi: 10.1016/j.porgcoat.2015.04.009.
  • [71] S. Tavarini, M. De Leo, R. Matteo, L. Lazzeri, A. Braca, and L. G. Angelini, “Flaxseed and camelina meals as potential sources of health-beneficial compounds”, Plants., vol. 10, no. 1, pp.156, Jan. 2021, doi: 10.3390/plants10010156.
  • [72] N. Codina-Pascual, J. Torra, B. Baraibar, and A. Royo-Esnal, “Weed suppression capacity of camelina (Camelina sativa) against winter weeds: The example of corn-poppy (Papaver rhoeas)”, Ind. Crops Prod., vol. 184, pp. 115063, Sep. 2022, doi: 10.1016/j.indcrop.2022.115063.
  • [73] S. Tavarini et al., “Evaluation of chemical composition of two linseed varieties as sources of health-beneficial substances”, Molecules., vol. 24, no. 20, pp. 3729, Oct. 2019, doi: 10.3390/molecules24203729.
  • [74] A. Majeed, "Application of Agrochemicals in Agriculture: Benefits, Risks and Responsibility of Stakeholders, Cit. Majeed A J Food Sci Toxicol., vol. 2, no.1, pp. 3, Jan. 2018.
  • [75] M. S. Ayilara et al., “Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides”, Frontiers in Microbiology., vol. 14, pp. 1040901, Feb. 2023. doi: 10.3389/fmicb.2023.1040901.
  • [76] J. Pernak et al., “Ammonium bio-ionic liquids based on camelina oil as potential novel agrochemicals”, RSC Adv., vol. 8, pp. 28676-28683, Agu.2018, doi: 10.1039/c8ra03519a.
  • [77] A. Abbas et al., “Application of allelopathic phenomena to enhance growth and production of camelina (Camelina sativa (L.))”, Appl. Ecol. Environ. Res., vol. 19, no. 1, pp. 453-469, Jul. 2021, doi: 10.15666/aeer/1901_453469.
  • [78] M. aepanovia et al., “Inhibitory effects of brassicaceae cover crop on ambrosia artemisiifolia germination and early growth”, Plants., vol. 10, no.9, pp. 28676-28683, Agu. 2021, doi: 10.3390/plants10040794.
  • [79] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges”, Renewable and Sustainable Energy Reviews., vol. 146, pp. 111180, Agu. 2021. doi: 10.1016/j.rser.2021.111180.
  • [80] P. Trumbo, S. Schlicker, A. A. Yates, and M. Poos, “Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids”, J. Am. Diet. Assoc., vol. 102, no. 11, pp. 1621-1631, Nov. 2002, doi: 10.1016/S0002-8223(02)90346-9.
  • [81] V. Musazadeh, P. Dehghan, and S. Azadmard-Damirchi, “Effectiveness of Co-Administration of Camelina Oil and Caloric Restriction on Cardiometabolic Risk Factors, Liver Function and Mental Health in Patients with Non-Alcoholic Fatty Liver Disease: A Blinded Randomized Controlled Trial Protocol”, J. Nutr. Food Secur., vol. 7, no. 3, pp. 379-387. 2022, doi: 10.18502/jnfs. v7i3.10204.
  • [82] D. Kurasiak-Popowska and K. Stuper-Szablewska, “The phytochemical quality of Camelina sativa seed and oil”, Acta Agric. Scand. Sect. B Soil Plant Sci., vol. 70, no. 1, pp. 39-47, May. 2020, doi: 10.1080/09064710.2019.1665706.
  • [83] J. Rode, “Study of autochthon Camelina sativa (L.) Crantz in Slovenia”, J. Herbs, Spices Med. Plants., vol. 9, no. 4, pp. 313-318, Oct. 2002, doi: 10.1300/J044v09n04_08.
  • [84] H. M. Karvonen, A. Aro, N. S. Tapola, I. Salminen, M. I. J. Uusitupa, and E. S. Sarkkinen, “Effect of á-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects”, Metabolism., vol. 51, no. 10, pp. 1253-1260, Oct. 2002, doi: 10.1053/meta.2002.35183.
  • [85] H. Abramovie and V. Abram, “Physico-chemical properties, composition and oxidative stability of camelina sativa oil, Food Technol”. Biotechnol., vol. 43, no .1, pp. 63-70, Sep. 2005.
  • [86] J. Zubr, “Carbohydrates, vitamins and minerals of Camelina sativa seed”, Nutr. Food Sci., vol. 40, no. 5, pp. 523-531, Sep. 2010, doi: 10.1108/00346651011077036.
  • [87] V. L. N. Brandao et al., “Effects of replacing canola meal with solvent-extracted camelina meal on microbial fermentation in a dual-flow continuous culture system”, J. Dairy Sci., vol. 101, no. 10, pp. 9028-9040, Oct. 2018, doi: 10.3168/jds.2018-14826.
  • [88] Hajiazizi, F., Sadeghi, A., & Ibrahim, S. (2024). Camelina sativa (L. Crantz) products; an alternative feed ingredient for poultry diets with its nutritional and physiological consequences. Tropical Animal Health and Production, 56(2), 59.
  • [89] Anca, G., Hăbeanu, M., Lefter, N. A., & Ropotă, M. (2019). Performance parameters, plasma lipid status, and lymphoid tissue fatty acid profile of broiler chicks fed camelina cake. Brazilian Journal of Poultry Science, 21, eRBCA-2019.
  • [90] P. Moriel et al., “Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers”, J. Anim. Sci., vol. 89, no. 12, pp. 4314-4324, Dec. 2011, doi: 10.2527/jas.2010-3630.
  • [91] E. M. Paula, L. G. da Silva, V. L. N. Brandao, X. Dai, and A. P. “Faciola, Feeding canola, camelina, and carinata meals to ruminants”, Animals., vol. 9, no. 10, pp. 704, Agu. 2019, doi: 10.3390/ani9100704.
  • [92] M. A. Rahim et al., “Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification”, Molecules., vol. 28, no. 19, 6881, Sep. 2023, doi: 10.3390/molecules28196881.
  • [93] J. M. Song et al., “Oil plant genomes: current state of the science”, Journal of Experimental Botany., vol. 73, no. 9, pp. 2859-2874, May. 2022, doi: 10.1093/jxb/erab472.
  • [94] R. Juodka et al., “Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids”, Animals., vol. 12, no. 3, pp. 295, Jan. 2022, doi: 10.3390/ani12030295.
  • [95] A. Y. Pekel, J. I. Kim, C. Chapple, and O. Adeola, “Nutritional characteristics of camelina meal for 3-week-old broiler chickens”, Poult. Sci., vol. 94, no. 3, pp. 371-378, Mar. 2015, doi: 10.3382/ps/peu066.
  • [96] R. K. Kahindi, T. A. Woyengo, P. A. Thacker, and C. M. Nyachoti, “Energy and amino acid digestibility of camelina cake fed to growing pigs”, Anim. Feed Sci. Technol., vol. 193, pp. 93-101, Jul. 2014, doi: 10.1016/j.anifeedsci.2014.03.012.
  • [97] F. N. Almeida, J. K. Htoo, J. Thomson, and H. H. Stein, “Amino acid digestibility in camelina products fed to growing pigs”, Can. J. Anim. Sci., vol. 93, no. 3, pp. 335-343, Agu. 2013, doi: 10.4141/CJAS2012-134.
  • [98] T. A. Woyengo, R. Patterson, B. A. Slominski, E. Beltranena, and R. T. Zijlstra, “Nutritive value of cold-pressed camelina cake with or without supplementation of multi-enzyme in broiler chickens”, Poult. Sci., vol. 95, no. 10, pp. 2314-2321, Oct. 2016, doi: 10.3382/ps/pew098.
  • [99] Ș. L. Bãtrîna et al., “Camelina sativa: A study on amino acid content”, Rom Biotechnol Lett, vol. 25, no. 1, pp. 1136 -1142, Jul. 2020, doi: 10.25083/rbl/25.1/1136.1142.
  • [100] J. Zubr, “Camelina oil in human nutrition”, Agro Food Ind. Hi. Tech., vol. 20, no. 4, pp. 22-28. 2009.
  • [101] C. Hurtaud and J. L. Peyraud, “Effects of feeding camelina (seeds or meal) on milk fatty acid composition and butter spreadability”, J. Dairy Sci., vol. 90, no. 11, pp. 5134-5145, Nov. 2007, doi: 10.3168/jds.2007-0031.
  • [102] C. Christodoulou et al., “Assessing the optimum level of supplementation with camelina seeds in ewes diets to improve milk quality”, Foods., vol. 10, no. 9, pp. 2076, Agu. 2021, doi: 10.3390/foods10092076.
  • [103] Z. Piravi-vanak et al., “Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran”, J. Mol. Liq., vol. 345, pp. 117043, Jan. 2022, doi: 10.1016/j.molliq.2021.117043.
  • [104] H. R. Ahmadvandi, A. Zeinodini, R. Ghobadi, and M. Gore, “Benefits of Adding Camelina to Rainfed Crop Rotation in Iran: A Crop with High Drought Tolerance”, Agrotechniques Ind. Crop., vol. 1, no. 2, pp. 91-96, Jun. 2021, doi: 10.22126/atic.2021.6410.1007
  • [105] P. G. Ergönül and Z. A. Özbek, “Cold pressed camelina (Camelina sativa L.) seed oil, in Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications., pp. 28676-28683. 2020, doi: 10.1016/B978-0-12-818188-1.00021-9.
  • [106] M. Raczyk, E. Popis, B. Kruszewski, K. Ratusz, and M. Rudziñska, “Physicochemical quality and oxidative stability of linseed (Linum usitatissimum) and camelina (Camelina sativa) cold-pressed oils from retail outlets”, Eur. J. Lipid Sci. Technol., vol. 118, no. 5, pp. 834-839, Jul. 2016, doi: 10.1002/ejlt.201500064.
  • [107] X. Wu and D. Y. C. Leung, “Optimization of biodiesel production from camelina oil using orthogonal experiment”, Appl. Energy., vol. 88, no. 11, pp. 3615-3624, Nov. 2011, doi: 10.1016/j.apenergy.2011.04.041.
  • [108] J. Yang, C. Caldwell, K. Corscadden, Q. S. He, and J. Li, “An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia”, Ind. Crops Prod., vol. 81, pp. 162-168, Mar. 2016, doi: 10.1016/j.indcrop.2015.11.073.
  • [109] N. Mikoajczak, M. Tañska, and D. Ogrodowska, “Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability”, Trends in Food Science and Technology., vol. 113, pp. 110-138, Jul. 2021, doi: 10.1016/j.tifs.2021.04.046.
  • [110] Y. Kocak et al., “Microwave-Assisted Fabrication of AgRuNi Trimetallic NPs with Their Antibacterial vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants”, Bionanoscience., vol. 14, no. 1, pp. 93-101, Nov. 2024, doi: 10.1007/s12668-023-01237-4.
  • [111] B. Matthäus, “Antioxidant activity of extracts obtained from residues of different oilseeds”, J. Agric. Food Chem., vol. 50, no. 12, pp. 3444-3452, May. 2002, doi: 10.1021/jf011440s.
  • [112] P. Terpinc, T. Polak, D. Makuc, N. P. Ulrih, and H. Abramoviè, “The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil”, Food Chem., vol. 131, no. 2, pp. 580-589, Mar. 2012, doi: 10.1016/j.foodchem.2011.09.033.
  • [113] H. Abramoviè, B. Butinar, and V. Nikoliè, “Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage”, Food Chem., vol. 104, no. 3, pp. 903-909. 2007, doi: 10.1016/j.foodchem.2006.12.044.
  • [114] H. Salminen, M. Estévez, R. Kivikari, and M. Heinonen, “Inhibition of protein and lipid oxidation by rapeseed, camelina and soy meal in cooked pork meat patties”, Eur. Food Res. Technol., vol. 223, pp. 461-468, Jan. 2006, doi: 10.1007/s00217-005-0225-5.
  • [115] M. Zajc, B. Kiczorowska, W. Samoliñska, and R. Klebaniuk, “Inclusion of camelina, flax, and sunflower seeds in the diets for broiler chickens: Apparent digestibility of nutrients, growth performance, health status, and carcass and meat quality traits”, Animals., vol. 10, no. 2, pp. 321, Feb. 2020, doi: 10.3390/ani10020321.
  • [116] R. Russo and R. Reggiani, “Antinutritive Compounds in Twelve Camelina sativa Genotypes”, Am. J. Plant Sci., vol. 3, no. 10, pp. 4, Jul. 2012, doi: 10.4236/ajps.2012.310170.
There are 116 citations in total.

Details

Primary Language English
Subjects Bioinformatic Methods Development, Biochemistry and Cell Biology (Other), Bioinorganic Chemistry, Herbology , Industrial Crops
Journal Section Review
Authors

Rayane Mahious 0009-0007-9443-1934

Ebru Halvacı 0009-0003-2343-0046

Ayşenur Aygün 0000-0002-8547-2589

Fatih Şen 0000-0001-6843-9026

Publication Date December 31, 2024
Submission Date July 8, 2024
Acceptance Date September 9, 2024
Published in Issue Year 2024 Issue: 059

Cite

IEEE R. Mahious, E. Halvacı, A. Aygün, and F. Şen, “The golden discovery of camelina sativa: a pivotal study of ıts unique components and its multiple uses in various applications in science and industry”, JSR-A, no. 059, pp. 105–118, December 2024, doi: 10.59313/jsr-a.1512490.