Research Article
BibTex RIS Cite

On (k,3)-arcs derived by Ceva configurations in PG(2,5)

Year 2024, Issue: 059, 10 - 18, 31.12.2024
https://doi.org/10.59313/jsr-a.1559383

Abstract

In this study, we investigate complete (k,2)-arcs and (k,3)-arcs derived from a Ceva configuration in the projective plane of order five by implementing an algorithm in C#. Our results indicate the existence of a complete (6,2)-arc that has no points in common with the (7,3)-arc formed by the Ceva configuration. Furthermore, we identify eight different complete (10,3)-arcs that include a Ceva configuration. Additionally, we explore cyclic order Ceva configurations, denoted as C_1,C_2,C_3, and C_4, all of which have a common center. The vertices of each configuration C_i are on the sides of the preceding configuration C_(i-1), with i ranging from 2 to 4. We determine different thirty-two complete (10,3)-arcs and different two complete (6,2)-arcs by constructing cyclic order Ceva configurations C_1,C_2,C_3,C_4 with a common center in PG(2,5).

References

  • [1] J.W.P. Hirschfeld and J.A. Thas, “General Galois Geometries,” Springer Monographs in Mathematics. Springer- Verlag London, 2016.
  • [2] A. Bayar, Z. Akca, E. Altintas, and S. Ekmekci, S. “On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9,” New Trend Math. Sci., 4(4), 266-266, 2016. http://dx.doi.org/10.20852/ntmsci.2016.113
  • [3] S. Ekmekci, A. Bayar, E. Altintas, and Z. Akca, “On the Complete (k,2)- Arcs of the Hall Plane of Order 9,” IJARCSSE, 6 (10), 282-288, 2016. ISSN: 2277 128X.
  • [4] Z. Akca, S. Ekmekci, and A. Bayar, “On Fano Configurations of the Left Hall Plane of order 9,” Konuralp J. Math., 4 (2), 116-123, 2016.
  • [5] Z. Akca, and A. Altıntas, “A Note on Fano Configurations in the Projective Space PG(5,2),” Konuralp J. Math., 9(1), 190-192, 2021.
  • [6] Z. Akca, “A numerical computation of (k, 3)-arcs in the left semifield plane order 9”, Int. Electron. J. Geom., 4(2), 13-21, 2011.
  • [7] Z. Akca, and I. Günaltılı, I. “On the (k, 3)- arcs of CPG (2,25,5),” Anadolu Univ J Sci Technol J Theor Sci, 1(0), 21-27, 2012.
  • [8] E. Altıntas, and A. Bayar, “Complete (k,2)-Arcs in the Projective Plane Order 5,” HSJG, 5(1), 11-14, 2023. e-ISSN 2687-4261.
  • [9] E. Altıntaş Kahriman, A. Bayar, “Some Geometric Structures Related to Desargues Confıguration in PG(2,5),” Estuscience-Se, 25(3):511-518, September 2024. https://doi.org/10.18038/estubtda.1525364
  • [10] O.H. Rodriguez, and J. Fernández, “Heuristic Conversations On Ceva's Theorem”, 2016.
  • [11] V. Danos, and L. Regnier, “The structure of multiplicatives,” Arch Math Logic, 28, 181-203, 1989. https://doi.org/10.1007/BF01622878
  • [12] J. Benitez, “A unified proof of Ceva and Menelaus’ theorems using projective geometry,” JGG, 11(1):39–44, 2007. ISSN 1433-8157
  • [13] V. Nicolae, “On The Ceva’s And Menelaus’s Theorems.” Rom. J. Phys., [S.l.], v. 5, n. 2, p. 43-50, 2020. ISSN 2537-5229.
  • [14] B.K. Funk, “Ceva and Menelaus in projective geometry,” University of Louisuille, 42 p, 2008.
  • [15] S. Çiftçi, R. Kaya, and J.C. Ferrar, “On Menelaus and Ceva 6-figures in Moufang projective planes,” Geom. Dedicata, vol. 19, no. 3, pp. 295–296, 1985.
  • [16] A. Bayar, and S. Ekmekçi, “On the Menelaus and Ceva 6-figures in the fibered projective planes,” Abstr. Appl. Anal.,1-5, 2014. 10.1155/2014/803173
  • [17] Z. Akça, A. Bayar, and S. Ekmekçi, “On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 891-899, 2020. https://doi.org/10.31801/cfsuasmas.567753.
  • [18] J.W.P. Hirschfeld, and J.A. Thas, “General Galois Geometries,” The Charendon Press, Oxford, 1991.
  • [19] J.W.P. Hirschfeld, and J.F. Voloch, “Group-arcs of prime order on cubic curves,” Finite Geometry and Combinatorics, 191, 177-185, 2015.
  • [20] J.W.P. Hirschfeld, and E.V.D. Pichanick “Bounded for arcs of arbitrary degree in finite Desarguesian Planes” J Comb Des., 24(4), 184-196, 2016.
  • [21] B.A. Qassim, “The construction for the arcs (8,4)-from the two arcs (7,4)-in PG (2,q), q=5,” J. Phys. Conf. Ser., 1664012039, 2020.
Year 2024, Issue: 059, 10 - 18, 31.12.2024
https://doi.org/10.59313/jsr-a.1559383

Abstract

References

  • [1] J.W.P. Hirschfeld and J.A. Thas, “General Galois Geometries,” Springer Monographs in Mathematics. Springer- Verlag London, 2016.
  • [2] A. Bayar, Z. Akca, E. Altintas, and S. Ekmekci, S. “On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9,” New Trend Math. Sci., 4(4), 266-266, 2016. http://dx.doi.org/10.20852/ntmsci.2016.113
  • [3] S. Ekmekci, A. Bayar, E. Altintas, and Z. Akca, “On the Complete (k,2)- Arcs of the Hall Plane of Order 9,” IJARCSSE, 6 (10), 282-288, 2016. ISSN: 2277 128X.
  • [4] Z. Akca, S. Ekmekci, and A. Bayar, “On Fano Configurations of the Left Hall Plane of order 9,” Konuralp J. Math., 4 (2), 116-123, 2016.
  • [5] Z. Akca, and A. Altıntas, “A Note on Fano Configurations in the Projective Space PG(5,2),” Konuralp J. Math., 9(1), 190-192, 2021.
  • [6] Z. Akca, “A numerical computation of (k, 3)-arcs in the left semifield plane order 9”, Int. Electron. J. Geom., 4(2), 13-21, 2011.
  • [7] Z. Akca, and I. Günaltılı, I. “On the (k, 3)- arcs of CPG (2,25,5),” Anadolu Univ J Sci Technol J Theor Sci, 1(0), 21-27, 2012.
  • [8] E. Altıntas, and A. Bayar, “Complete (k,2)-Arcs in the Projective Plane Order 5,” HSJG, 5(1), 11-14, 2023. e-ISSN 2687-4261.
  • [9] E. Altıntaş Kahriman, A. Bayar, “Some Geometric Structures Related to Desargues Confıguration in PG(2,5),” Estuscience-Se, 25(3):511-518, September 2024. https://doi.org/10.18038/estubtda.1525364
  • [10] O.H. Rodriguez, and J. Fernández, “Heuristic Conversations On Ceva's Theorem”, 2016.
  • [11] V. Danos, and L. Regnier, “The structure of multiplicatives,” Arch Math Logic, 28, 181-203, 1989. https://doi.org/10.1007/BF01622878
  • [12] J. Benitez, “A unified proof of Ceva and Menelaus’ theorems using projective geometry,” JGG, 11(1):39–44, 2007. ISSN 1433-8157
  • [13] V. Nicolae, “On The Ceva’s And Menelaus’s Theorems.” Rom. J. Phys., [S.l.], v. 5, n. 2, p. 43-50, 2020. ISSN 2537-5229.
  • [14] B.K. Funk, “Ceva and Menelaus in projective geometry,” University of Louisuille, 42 p, 2008.
  • [15] S. Çiftçi, R. Kaya, and J.C. Ferrar, “On Menelaus and Ceva 6-figures in Moufang projective planes,” Geom. Dedicata, vol. 19, no. 3, pp. 295–296, 1985.
  • [16] A. Bayar, and S. Ekmekçi, “On the Menelaus and Ceva 6-figures in the fibered projective planes,” Abstr. Appl. Anal.,1-5, 2014. 10.1155/2014/803173
  • [17] Z. Akça, A. Bayar, and S. Ekmekçi, “On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 891-899, 2020. https://doi.org/10.31801/cfsuasmas.567753.
  • [18] J.W.P. Hirschfeld, and J.A. Thas, “General Galois Geometries,” The Charendon Press, Oxford, 1991.
  • [19] J.W.P. Hirschfeld, and J.F. Voloch, “Group-arcs of prime order on cubic curves,” Finite Geometry and Combinatorics, 191, 177-185, 2015.
  • [20] J.W.P. Hirschfeld, and E.V.D. Pichanick “Bounded for arcs of arbitrary degree in finite Desarguesian Planes” J Comb Des., 24(4), 184-196, 2016.
  • [21] B.A. Qassim, “The construction for the arcs (8,4)-from the two arcs (7,4)-in PG (2,q), q=5,” J. Phys. Conf. Ser., 1664012039, 2020.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Elif Altıntaş Kahriman 0000-0002-3454-0326

Ayşe Bayar 0000-0002-2210-5423

Publication Date December 31, 2024
Submission Date October 1, 2024
Acceptance Date November 3, 2024
Published in Issue Year 2024 Issue: 059

Cite

IEEE E. Altıntaş Kahriman and A. Bayar, “On (k,3)-arcs derived by Ceva configurations in PG(2,5)”, JSR-A, no. 059, pp. 10–18, December 2024, doi: 10.59313/jsr-a.1559383.