Loading [MathJax]/extensions/MathMenu.js
Review
BibTex RIS Cite
Year 2025, Issue: 060, 126 - 149, 25.03.2025
https://doi.org/10.59313/jsr-a.1634164

Abstract

References

  • [1] Sheremet MA. Applications of Nanofluids. Nanomaterials 2021;11:1716. https://doi.org/10.3390/nano11071716.
  • [2] Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022;12:1386. https://doi.org/10.3390/catal12111386.
  • [3] Bayat R, Yildizay HD, Şen F. Thermopower energy waves propagation in novel generation carbon fibers/fuel composite. Fuel 2025;385:134112. https://doi.org/10.1016/j.fuel.2024.134112.
  • [4] Şen B, Demirkan B, Savk A, Kartop R, Nas MS, Alma MH, et al. High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction. J Mol Liq 2018;268:807–12. https://doi.org/10.1016/J.MOLLIQ.2018.07.117.
  • [5] Nagraik R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar AP. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review. Sensors Int 2021;2:100089. https://doi.org/10.1016/J.SINTL.2021.100089.
  • [6] Eris S, Daşdelen Z, Sen F. Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation. Int J Hydrogen Energy 2018;43:385–90. https://doi.org/10.1016/J.IJHYDENE.2017.11.063.
  • [7] Şen F, Gökaǧaç G. Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol. Energy and Fuels 2008;22:1858–64. https://doi.org/10.1021/EF700575T.
  • [8] Şen F, Demirbaş Ö, Çalımlı MH, Aygün A, Alma MH, Nas MS. The dye removal from aqueous solution using polymer composite films. Appl Water Sci 2018;8:1–9. https://doi.org/10.1007/S13201-018-0856-X/TABLES/5.
  • [9] Nesrin K, Yusuf C, Ahmet K, Ali SB, Muhammad NA, Suna S, et al. Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities. J Pharm Biomed Anal 2020;179:112993. https://doi.org/10.1016/J.JPBA.2019.112993.
  • [10] Ayranci R, Baskaya G, Guzel M, Bozkurt S, Ak M, Savk A, et al. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Structures & Nano-Objects 2017;11:13–9. https://doi.org/10.1016/J.NANOSO.2017.05.008.
  • [11] Günbatar S, Aygun A, Karataş Y, Gülcan M, Şen F. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J Colloid Interface Sci 2018;530:321–7. https://doi.org/10.1016/J.JCIS.2018.06.100.
  • [12] Khand NH, Solangi AR, Ameen S, Fatima A, Buledi JA, Mallah A, et al. A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE. J Food Meas Charact 2021;15:3720–30. https://doi.org/10.1007/S11694-021-00956-0/TABLES/2.
  • [13] Göksu H, Yıldız Y, Çelik B, Yazıcı M, Kılbaş B, Şen F. Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane. ChemistrySelect 2016;1:953–8. https://doi.org/10.1002/SLCT.201600207.
  • [14] Yıldız Y, Esirden İ, Erken E, Demir E, Kaya M, Şen F. Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes. ChemistrySelect 2016;1:1695–701. https://doi.org/10.1002/SLCT.201600265.
  • [15] Gulbagca F, Aygün A, Gülcan M, Ozdemir S, Gonca S, Şen F. Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities. Appl Organomet Chem 2021;35:e6272. https://doi.org/10.1002/AOC.6272. [16] Ganji DD, Kachapi SHH. Introduction to Nanotechnology, Nanomechanics, Micromechanics, and Nanofluid. Appl. Nonlinear Syst. Nanomechanics Nanofluids, Elsevier; 2015, p. 1–11. https://doi.org/10.1016/B978-0-323-35237-6.00001-7.
  • [17] Abrahamson JT, Sempere B, Walsh MP, Forman JM, Şen F, Şen S, et al. Excess thermopower and the theory of thermopower waves. ACS Nano 2013;7:6533–44. https://doi.org/10.1021/NN402411K/SUPPL_FILE/NN402411K_SI_001.PDF.
  • [18] Cherif A, Nebbali R, Sheffield JW, Doner N, Sen F. Numerical investigation of hydrogen production via autothermal reforming of steam and methane over Ni/Al2O3 and Pt/Al2O3 patterned catalytic layers. Int J Hydrogen Energy 2021;46:37521–32. https://doi.org/10.1016/J.IJHYDENE.2021.04.032.
  • [19] Bacha H Ben, Ullah N, Hamid A, Shah NA. A comprehensive review on nanofluids: Synthesis, cutting-edge applications, and future prospects. Int J Thermofluids 2024;22:100595. https://doi.org/10.1016/j.ijft.2024.100595.
  • [20] Hashimoto S, Yamaguchi S, Harada M, Nakajima K, Kikuchi T, Ohishi K. Anomalous behavior of liquid molecules near solid nanoparticles: Novel interpretation on thermal conductivity enhancement in nanofluids. J Colloid Interface Sci 2023;638:475–86. https://doi.org/10.1016/j.jcis.2023.01.101.
  • [21] Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—A review. Renew Sustain Energy Rev 2017;75:451–60. https://doi.org/10.1016/j.rser.2016.11.010.
  • [22] Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019;12:908–31. https://doi.org/10.1016/j.arabjc.2017.05.011.
  • [23] Chen J, Wang H, Xie P. Pavement temperature prediction: Theoretical models and critical affecting factors. Appl Therm Eng 2019;158:113755. https://doi.org/10.1016/j.applthermaleng.2019.113755.
  • [24] Donat Yildizay H, Aydin Ö, Böke YE. Investigation of Pıpe Failures in Thermal Power Plants. Bilecik Şeyh Edebali Üniversitesi Fen Bilim Derg 2022.
  • [25] Awais M, Ullah N, Ahmad J, Sikandar F, Ehsan MM, Salehin S, et al. Heat transfer and pressure drop performance of Nanofluid: A state-of- the-art review. Int J Thermofluids 2021;9:100065. https://doi.org/10.1016/j.ijft.2021.100065.
  • [26] Rahman MA, Hasnain SMM, Pandey S, Tapalova A, Akylbekov N, Zairov R. Review on Nanofluids: Preparation, Properties, Stability, and Thermal Performance Augmentation in Heat Transfer Applications. ACS Omega 2024. https://doi.org/10.1021/acsomega.4c03279.
  • [27] Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors 2022;13:40. https://doi.org/10.3390/bios13010040.
  • [28] Bekmezci M, Akin M, Gules GN, Bayat R, Sen F. Innovative chelation strategies for facile synthesis of bimetallic nanomaterials with remarkable photocatalytic and biochemical activities. Next Res 2024;1:100001. https://doi.org/10.1016/j.nexres.2024.100001.
  • [29] Yilmaz B, Bayat R, Bekmezci M, Şen F. Metal organic framework-based nanocomposites for alcohol fuel cells. Nanomater Direct Alcohol Fuel Cells 2021:353–70. https://doi.org/10.1016/B978-0-12-821713-9.00006-8.
  • [30] Bingül Reçber Z, Burhan H, Bayat R, Nas MS, Calimli MH, Demirbas Ö, et al. Fabrication of activated carbon supported modified with bimetallic-platin ruthenium nano sorbent for removal of azo dye from aqueous media using enhanced ultrasonic wave. Environ Pollut 2022;302:119033. https://doi.org/10.1016/J.ENVPOL.2022.119033.
  • [31] Karimi-Maleh H, Khataee A, Karimi F, Baghayeri M, Fu L, Rouhi J, et al. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 2022;291:132928. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132928.
  • [32] Goksu H, Bekmezci M, Erduran V, Şen F. Bimetallic nanomaterials for direct alcohol fuel cells. Nanomater Direct Alcohol Fuel Cells 2021:145–56. https://doi.org/10.1016/B978-0-12-821713-9.00017-2.
  • [33] Yaqoob L, Noor T, Iqbal N. Recent progress in development of efficient electrocatalyst for methanol oxidation reaction in direct methanol fuel cell. Int J Energy Res 2021;45:6550–83. https://doi.org/10.1002/er.6316.
  • [34] Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, et al. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024;16:636. https://doi.org/10.3390/nu16050636.
  • [35] Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019;25:112. https://doi.org/10.3390/molecules25010112.
  • [36] Nur Maran F, Turk I, Akkoyun B, Talaat Fawzy Meligy M, Lubiceva E, Ikballi D, et al. Nanotechnology, and its versatile applications in medicine, environment, energy, textiles, food industry. Int J Boron Sci Nanotechnol 2023;18.
  • [37] Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polym 2023, Vol 15, Page 1596 2023;15:1596. https://doi.org/10.3390/POLYM15071596.
  • [38] Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022 201 2022;20:1–29. https://doi.org/10.1186/S12951-022-01477-8.
  • [39] Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Mol 2023, Vol 28, Page 4932 2023;28:4932. https://doi.org/10.3390/MOLECULES28134932.
  • [40] Saleh HM, Hassan AI. Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices. Sustainability 2023;15:10891. https://doi.org/10.3390/su151410891.
  • [41] Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol 2023;14. https://doi.org/10.3389/fmicb.2023.1155622.
  • [42] Modi KV, Patel PR, Patel SK. Applicability of mono-nanofluid and hybrid-nanofluid as a technique to improve the performance of solar still: A critical review. J Clean Prod 2023;387:135875. https://doi.org/10.1016/j.jclepro.2023.135875.
  • [43] Choi SUS. Nanofluids: A New Field of Scientific Research and Innovative Applications. Heat Transf Eng 2008;29:429–31. https://doi.org/10.1080/01457630701850778.
  • [44] Das SK, Choi SUS. A Review of Heat Transfer in Nanofluids, 2009, p. 81–197. https://doi.org/10.1016/S0065-2717(08)41002-X.
  • [45] Pordanjani AH, Aghakhani S, Afrand M, Sharifpur M, Meyer JP, Xu H, et al. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. J Clean Prod 2021;320:128573. https://doi.org/10.1016/j.jclepro.2021.128573.
  • [46] Godson L, Raja B, Mohan Lal D, Wongwises S. Enhancement of heat transfer using nanofluids—An overview. Renew Sustain Energy Rev 2010;14:629–41. https://doi.org/10.1016/j.rser.2009.10.004.
  • [47] Alirezaie A, Hajmohammad MH, Alipour A, Salari M. Do nanofluids affect the future of heat transfer?“A benchmark study on the efficiency of nanofluids.” Energy 2018;157:979–89. https://doi.org/10.1016/j.energy.2018.05.060.
  • [48] Bobbo S, Buonomo B, Manca O, Vigna S, Fedele L. Analysis of the Parameters Required to Properly Define Nanofluids for Heat Transfer Applications. Fluids 2021;6:65. https://doi.org/10.3390/fluids6020065.
  • [49] Chaichan MT, Kazem HA, Al-Ghezi MKS, Al-Waeli AHA, Ali AJ, Sopian K, et al. Effect of Different Preparation Parameters on the Stability and Thermal Conductivity of MWCNT-Based Nanofluid Used for Photovoltaic/Thermal Cooling. Sustainability 2023;15:7642. https://doi.org/10.3390/su15097642.
  • [50] Pereira J, Souza R, Moita A, Moreira A. Nanofluids and Ionic Fluids as Liquid Electrodes: An Overview on Their Properties and Potential Applications. Processes 2023;11:3189. https://doi.org/10.3390/pr11113189.
  • [51] Minea AA, Moldoveanu MG. Studies on Al2O3, CuO, and TiO2 water-based nanofluids: A comparative approach in laminar and turbulent flow. J Eng Thermophys 2017;26:291–301. https://doi.org/10.1134/S1810232817020114.
  • [52] Buschmann MH, Azizian R, Kempe T, Juliá JE, Martínez-Cuenca R, Sundén B, et al. Correct interpretation of nanofluid convective heat transfer. Int J Therm Sci 2018;129:504–31. https://doi.org/10.1016/j.ijthermalsci.2017.11.003.
  • [53] Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev 2017;76:1134–52. https://doi.org/10.1016/j.rser.2017.03.113.
  • [54] Said Z, Sundar LS, Tiwari AK, Ali HM, Sheikholeslami M, Bellos E, et al. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys Rep 2022;946:1–94. https://doi.org/10.1016/j.physrep.2021.07.002.
  • [55] Bhanushali S, Jason NN, Ghosh P, Ganesh A, Simon GP, Cheng W. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry. ACS Appl Mater Interfaces 2017;9:18925–35. https://doi.org/10.1021/acsami.7b03339.
  • [56] Wu H, Luo Y, Li G, Yuan Y, Chang J, Kang N, et al. Enhanced oil recovery using amphiphilic nanomaterials with tailored functionalities: a review. J Mol Liq 2025:127190. https://doi.org/10.1016/j.molliq.2025.127190.
  • [57] Owuna FJ. Stability of vegetable based oils used in the formulation of ecofriendly lubricants – a review. Egypt J Pet 2020;29:251–6. https://doi.org/10.1016/j.ejpe.2020.09.003.
  • [58] Hong R, Cima MJ, Weissleder R, Josephson L. Magnetic microparticle aggregation for viscosity determination by MR. Magn Reson Med 2008;59:515–20. https://doi.org/10.1002/mrm.21526.
  • [59] Yang L, Tian J, Ding Y, Alagumalai A, Selimefendigil F, Aghbashlo M, et al. The physics of phase transition phenomena enhanced by nanoparticles. Appl Phys Rev 2025;12. https://doi.org/10.1063/5.0200714.
  • [60] Afzal A, Nawfal I, Mahbubul IM, Kumbar SS. An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim 2019;135:393–418. https://doi.org/10.1007/s10973-018-7144-8.
  • [61] Gokapai V, Pothana P, Ling K. Nanoparticles in Drilling Fluids: A Review of Types, Mechanisms, Applications, and Future Prospects. Eng 2024;5:2462–95. https://doi.org/10.3390/eng5040129.
  • [62] Yu W, Xie H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J Nanomater 2012;2012. https://doi.org/10.1155/2012/435873.
  • [63] Kalsi S, Kumar S, Kumar A, Alam T, Dobrotă D. Thermophysical properties of nanofluids and their potential applications in heat transfer enhancement: A review. Arab J Chem 2023;16:105272. https://doi.org/10.1016/j.arabjc.2023.105272.
  • [64] Moita A, Moreira A, Pereira J. Nanofluids for the Next Generation Thermal Management of Electronics: A Review. Symmetry (Basel) 2021;13:1362. https://doi.org/10.3390/sym13081362.
  • [65] Gujar JG, Patil SS, Sonawane SS. A Review on Nanofluids: Synthesis, Stability, and Uses in the Manufacturing Industry. Curr Nanomater 2023;8:303–18. https://doi.org/10.2174/2405461507666220630153637.
  • [66] Souza RR, Gonçalves IM, Rodrigues RO, Minas G, Miranda JM, Moreira ALN, et al. Recent advances on the thermal properties and applications of nanofluids: From nanomedicine to renewable energies. Appl Therm Eng 2022;201:117725. https://doi.org/10.1016/j.applthermaleng.2021.117725.
  • [67] Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, et al. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys Rep 2020;843:1–81. https://doi.org/10.1016/j.physrep.2019.12.001.
  • [68] Gal S, Cabaleiro D, Hassen W, Nasri A, Lafue Y, Pham-Huu C, et al. Thermophysical Profile of Industrial Graphene Water-Based Nanofluids. Nanomaterials 2024;14:1401. https://doi.org/10.3390/nano14171401.
  • [69] Genc O. Proposal of a new surfactant for CuO/water nanofluids: Optimization of surfactant ratio and ultrasonication time. Powder Technol 2024;444:120074. https://doi.org/10.1016/j.powtec.2024.120074.
  • [70] Pambudi NA, Sarifudin A, Firdaus RA, Ulfa DK, Gandidi IM, Romadhon R. The immersion cooling technology: Current and future development in energy saving. Alexandria Eng J 2022;61:9509–27. https://doi.org/10.1016/j.aej.2022.02.059.
  • [71] Azmi WH, Sharma K V, Mamat R, Alias ABS, Misnon II. Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conf Ser Mater Sci Eng 2012;36:012029. https://doi.org/10.1088/1757-899X/36/1/012029.
  • [72] Zubair MM, Seraj M, Faizan M, Anas M, Yahya SM. Experimental study on heat transfer of an engine radiator with TiO2/EG-water nano-coolant. SN Appl Sci 2021;3:434. https://doi.org/10.1007/s42452-021-04441-7.
  • [73] Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Golbahar Haghighi MR. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Eng J 2017;56:161–70. https://doi.org/10.1016/j.aej.2016.09.019.
  • [74] Eneren P, Aksoy YT, Vetrano MR. Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review. Energies 2022;15:2525. https://doi.org/10.3390/en15072525.
  • [75] Said Z, Pandey AK, Tiwari AK, Kalidasan B, Jamil F, Thakur AK, et al. Nano-enhanced phase change materials: Fundamentals and applications. Prog Energy Combust Sci 2024;104:101162. https://doi.org/10.1016/j.pecs.2024.101162.
  • [76] Liang G, Mudawar I. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int J Heat Mass Transf 2019;136:324–54. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086.
  • [77] Wang R, Yin Y, Li Q, Hai X, Deng N, Huang C. Heat Transfer Enhancement of Energy Pile with Nanofluids as Heat Carrier. Adv Civ Eng 2023;2023:1–15. https://doi.org/10.1155/2023/2035247.
  • [78] Iftikhar N, Rehman A, Sadaf H. Theoretical investigation for convective heat transfer on Cu/water nanofluid and (SiO2-copper)/water hybrid nanofluid with MHD and nanoparticle shape effects comprising relaxation and contraction phenomenon. Int Commun Heat Mass Transf 2021;120:105012. https://doi.org/10.1016/j.icheatmasstransfer.2020.105012.
  • [79] Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf 2013;41:41–6. https://doi.org/10.1016/j.icheatmasstransfer.2012.11.004.
  • [80] Kazem HA, Chaichan MT, Al-Waeli AHA. Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: an experimental study. Energy Sources, Part A Recover Util Environ Eff 2022;44:3673–91. https://doi.org/10.1080/15567036.2022.2070305.
  • [81] Freitas SMO. Nanofluids for heat exchanger improvement: a numerical approach. 2012.
  • [82] Kulkarni DP, Das DK, Vajjha RS. Application of nanofluids in heating buildings and reducing pollution. Appl Energy 2009;86:2566–73. https://doi.org/10.1016/j.apenergy.2009.03.021.
  • [83] Buongiorno J, Hu L-W, Kim SJ, Hannink R, Truong B, Forrest E. Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps. Nucl Technol 2008;162:80–91. https://doi.org/10.13182/NT08-A3934.
  • [84] Tao Q, Zhong F, Deng Y, Wang Y, Su C. A Review of Nanofluids as Coolants for Thermal Management Systems in Fuel Cell Vehicles. Nanomaterials 2023;13:2861. https://doi.org/10.3390/nano13212861.
  • [85] OWENSIII D, PEPPAS N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.
  • [86] Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications. Nanotechnol Sci Appl 2020;Volume 13:47–59. https://doi.org/10.2147/NSA.S260374.
  • [87] Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003;36:R167–81. https://doi.org/10.1088/0022-3727/36/13/201.
  • [88] KOTHANDAPANI M, PRAKASH J. THE PERISTALTIC TRANSPORT OF CARREAU NANOFLUIDS UNDER EFFECT OF A MAGNETIC FIELD IN A TAPERED ASYMMETRIC CHANNEL: APPLICATION OF THE CANCER THERAPY. J Mech Med Biol 2015;15:1550030. https://doi.org/10.1142/S021951941550030X.
  • [89] Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, et al. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics 2023;15:1868. https://doi.org/10.3390/PHARMACEUTICS15071868.
  • [90] Hsu C-Y, Rheima AM, Kadhim MM, Ahmed NN, Mohammed SH, Abbas FH, et al. An overview of nanoparticles in drug delivery: Properties and applications. South African J Chem Eng 2023;46:233–70. https://doi.org/10.1016/j.sajce.2023.08.009.
  • [91] Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Front Nanotechnol 2021;3:644564. https://doi.org/10.3389/FNANO.2021.644564/BIBTEX.
  • [92] He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed Res Int 2013;2013:578290. https://doi.org/10.1155/2013/578290.
  • [93] Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674–9. https://doi.org/10.1016/J.CBPA.2005.10.005.
  • [94] Choi SUS. Nanofluids: From vision to reality through research. J Heat Transfer 2009;131:1–9. https://doi.org/10.1115/1.3056479.
  • [95] Mondol JD, Buonomano A, Das B, Pereira J, Souza R, Moreira A, et al. A Review on the Nanofluids-PCMs Integrated Solutions for Solar Thermal Heat Transfer Enhancement Purposes. Technol 2023, Vol 11, Page 166 2023;11:166. https://doi.org/10.3390/TECHNOLOGIES11060166.
  • [96] Ho MLG, Oon CS, Tan L-L, Wang Y, Hung YM. A review on nanofluids coupled with extended surfaces for heat transfer enhancement. Results Eng 2023;17:100957. https://doi.org/10.1016/j.rineng.2023.100957.
  • [97] Babar H, Sajid M, Ali H. Viscosity of hybrid nanofluids: A critical review. Therm Sci 2019;23:1713–54. https://doi.org/10.2298/TSCI181128015B.
  • [98] Ma B, Banerjee D. A Review of Nanofluid Synthesis. Adv. Nanomater., Cham: Springer International Publishing; 2018, p. 135–76. https://doi.org/10.1007/978-3-319-64717-3_6.
  • [99] Hirudayanathan HP, Debnath S, Anwar M, Johar MB, Elumalai NK, Mohammed Iqbal U. A review on influence of nanoparticle parameters on viscosity of nanofluids and machining performance in minimum quantity lubrication. Proc Inst Mech Eng Part E J Process Mech Eng 2023. https://doi.org/10.1177/09544089231189668.
  • [100] Mehta B, Subhedar D, Panchal H, Said Z. Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid – A review. J Mol Liq 2022;364:120034. https://doi.org/10.1016/j.molliq.2022.120034.
  • [101] Pereira JE, Moita AS, Moreira ALN. The pressing need for green nanofluids: A review. J Environ Chem Eng 2022;10:107940. https://doi.org/10.1016/j.jece.2022.107940.
  • [102] Khatai S, Kumar R, Sahoo AK, Panda A, Das D. Metal-oxide based nanofluid application in turning and grinding processes: A comprehensive review. Mater Today Proc 2020;26:1707–13. https://doi.org/10.1016/j.matpr.2020.02.360.
  • [103] Elango T, Kannan A, Kalidasa Murugavel K. Performance study on single basin single slope solar still with different water nanofluids. Desalination 2015;360:45–51. https://doi.org/10.1016/j.desal.2015.01.004.
  • [104] Krishna Varma KPV, Kishore PS, Durga Prasad PV. Enhancement of Heat Transfer Using Fe3O4 / Water Nanofluid with Varying Cut-Radius Twisted Tape Inserts. Int J Appl Eng Res 2017;12:7088. https://doi.org/10.37622/IJAER/12.18.2017.7088-7095.
  • [105] Hussein FM, Faraj J, Jabbar R. Experimental Investigation of Adding Nano-Particles to PCM for Heating Applications. J Mech Eng Autom 2018;8:32–7. https://doi.org/DOI: 10.5923/j.jmea.20180801.03.
  • [106] Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Acc Chem Res 2008;41:1721–30. https://doi.org/10.1021/ar800035u.
  • [107] Kishore PS, Sireesha V, Sree Harsha V, Dharma Rao V, Brusly Solomon A. Preparation, characterization and thermo-physical properties of Cu-graphene nanoplatelets hybrid nanofluids. Mater Today Proc 2020;27:610–4. https://doi.org/10.1016/j.matpr.2019.12.108.
  • [108] Baby TT, Sundara R. Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids. J Phys Chem C 2011;115:8527–33. https://doi.org/10.1021/jp200273g.
  • [109] Ho CJ, Huang JB, Tsai PS, Yang YM. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transf 2010;37:490–4. https://doi.org/10.1016/j.icheatmasstransfer.2009.12.007.
  • [110] Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 2011;21:9702. https://doi.org/10.1039/c0jm04106h.
  • [111] Phillips L. Solar energy. Manag. Glob. Warm., Elsevier; 2019, p. 317–32. https://doi.org/10.1016/B978-0-12-814104-5.00009-0.
  • [112] Jaiswal KK, Chowdhury CR, Yadav D, Verma R, Dutta S, Jaiswal KS, et al. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022;7:100118. https://doi.org/10.1016/j.nexus.2022.100118.
  • [113] Ukoba K, Yoro KO, Eterigho-Ikelegbe O, Ibegbulam C, Jen T-C. Adaptation of solar energy in the Global South: Prospects, challenges and opportunities. Heliyon 2024;10:e28009. https://doi.org/10.1016/j.heliyon.2024.e28009.
  • [114] Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev 2014;39:748–64. https://doi.org/10.1016/j.rser.2014.07.113.
  • [115] Arnaoutakis GE, Katsaprakakis DA. Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems. Energies 2024;17:556. https://doi.org/10.3390/en17030556.
  • [116] Ahmed YE, Maghami MR, Pasupuleti J, Danook SH, Basim Ismail F. Overview of Recent Solar Photovoltaic Cooling System Approach. Technologies 2024;12:171. https://doi.org/10.3390/technologies12090171.
  • [117] Dwivedi P, Sudhakar K, Soni A, Solomin E, Kirpichnikova I. Advanced cooling techniques of P.V. modules: A state of art. Case Stud Therm Eng 2020;21:100674. https://doi.org/10.1016/j.csite.2020.100674.
  • [118] Alami AH, Olabi AG, Mdallal A, Rezk A, Radwan A, Rahman SMA, et al. Concentrating solar power (CSP) technologies: Status and analysis. Int J Thermofluids 2023;18:100340. https://doi.org/10.1016/j.ijft.2023.100340.
  • [119] Salehi R, Jahanbakhshi A, Ooi JB, Rohani A, Golzarian MR. Study on the performance of solar cells cooled with heatsink and nanofluid added with aluminum nanoparticle. Int J Thermofluids 2023;20:100445. https://doi.org/10.1016/j.ijft.2023.100445.
  • [120] Janus J, Filipowska M, Jabłoński H, Wieliński M, Sornek K. Overview of Technologies for Solar Systems and Heat Storage: The Use of Computational Fluid Dynamics for Performance Analysis and Optimization. Energies 2024;17:6001. https://doi.org/10.3390/en17236001.
  • [121] Shirazi A, Taylor RA, Morrison GL, White SD. Solar-powered absorption chillers: A comprehensive and critical review. Energy Convers Manag 2018;171:59–81. https://doi.org/10.1016/j.enconman.2018.05.091.
  • [122] Moravej M, Bozorg MV, Guan Y, Li LKB, Doranehgard MH, Hong K, et al. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustain Energy Technol Assessments 2020;40:100783. https://doi.org/10.1016/j.seta.2020.100783.
  • [123] Gao Y, Xi Y, Zhenzhong Y, Sasmito A, Mujumdar A, Wang L. Experimental investigation of specific heat of aqueous graphene oxide Al2O3 hybrid nanofluid. Therm Sci 2021;25:515–25. https://doi.org/10.2298/TSCI190404381G.
  • [124] Bai Y, Chow TT, Ménézo C, Dupeyrat P. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application. Int J Photoenergy 2012;2012:1–13. https://doi.org/10.1155/2012/265838.
  • [125] Wang Y, Boulic M, Phipps R, Plagmann M, Cunningham C. Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand. Energies 2020;13:1415. https://doi.org/10.3390/en13061415.
  • [126] Saeed FR, Al-Dulaimi MA. Numerical investigation for convective heat transfer of nanofluid laminar flow inside a circular pipe by applying various models. Arch Thermodyn 2023. https://doi.org/10.24425/ather.2021.136948.
  • [127] Macdevette MM, Myers · T G, Wetton · B. Boundary layer analysis and heat transfer of a nanofluid. Prog Ind Math ECMI 2016.
  • [128] Alibar M, Aydin D. Experimental Analysis of a Parabolic Trough Collector Performance Under Mediterranean Climate Conditions. El-Cezeri Fen ve Mühendislik Derg 2021. https://doi.org/10.31202/ecjse.884283.
  • [129] Khan WA, Shaikh K, Nawaz R, Kazi SN, Mohd Zubir MN. Enhancement of heat transfer with nanofluids and its applications in heat exchangers, 2024, p. 101–28. https://doi.org/10.1016/bs.aiht.2024.05.001.
  • [130] Said Z, Hachicha AA, Aberoumand S, Yousef BAA, Sayed ET, Bellos E. Recent advances on nanofluids for low to medium temperature solar collectors: energy, exergy, economic analysis and environmental impact. Prog Energy Combust Sci 2021;84:100898. https://doi.org/10.1016/j.pecs.2020.100898.
  • [131] Rose BAJ, Singh H, Verma N, Tassou S, Suresh S, Anantharaman N, et al. Investigations into nanofluids as direct solar radiation collectors. Sol Energy 2017;147:426–31. https://doi.org/10.1016/j.solener.2017.03.063.
  • [132] Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, et al. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett 2007;7:2758–63. https://doi.org/10.1021/nl071254m.
  • [133] Ladjevardi SM, Asnaghi A, Izadkhast PS, Kashani AH. Applicability of graphite nanofluids in direct solar energy absorption. Sol Energy 2013;94:327–34. https://doi.org/10.1016/j.solener.2013.05.012.
  • [134] Tyagi H, Phelan P, Prasher R. Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. J Sol Energy Eng 2009;131. https://doi.org/10.1115/1.3197562.
  • [135] Nguyen L V., Kosinski P, Balakin B V., Kosinska A. Direct absorption solar collector: Use of nanofluids and biodegradable colloids. Int J Therm Sci 2023;190:108292. https://doi.org/10.1016/j.ijthermalsci.2023.108292.
  • [136] L’Annunziata MF. Neutron Radiation. Radioactivity 2016:361–89. https://doi.org/10.1016/B978-0-444-63489-4.00010-1.
  • [137] Soto GH, Martinez-Cobas X. Nuclear energy generation’s impact on the CO2 emissions and ecological footprint among European Union countries. Sci Total Environ 2024;945:173844. https://doi.org/10.1016/j.scitotenv.2024.173844.
  • [138] Kessides IN. The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise. Energy Policy 2012;48:185–208. https://doi.org/10.1016/j.enpol.2012.05.008.
  • [139] Rouault J, Chellapandi P, Raj B, Dufour P, Latge C, Paret L, et al. Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety. Handb. Nucl. Eng., Boston, MA: Springer US; 2010, p. 2321–710. https://doi.org/10.1007/978-0-387-98149-9_21.
  • [140] Sayed ET;, Olabi AG;, Alami AH;, Radwan A;, Mdallal A;, Rezk A;, et al. Renewable Energy and Energy Storage Systems. Energies 2023, Vol 16, Page 1415 2023;16:1415. https://doi.org/10.3390/EN16031415.
  • [141] Temurçin K, Aliağaoğlu A. Nuclear energy and reality of nuclear energy in Turkey in the light of discussions. Co 2003;1:25–39. https://doi.org/10.1501/cogbil_0000000034.
  • [142] Roeser S. Nuclear Energy, Risk, and Emotions. Philos Technol 2011;24:197–201. https://doi.org/10.1007/s13347-011-0027-6.
  • [143] Temurçin K, Aliağaoğlu A. Nuclear energy and reality of nuclear energy in Turkey in the light of discussions. Coğrafi Bilim Derg 2003;1:25–39. https://doi.org/10.1501/Cogbil_0000000034.
  • [144] Letcher TM (Trevor M. Future energy : improved, sustainable and clean options for our planet. Elsevier; 2008.
  • [145] Lewins J, Becker M, editors. Advances in Nuclear Science and Technology. vol. 16. Boston, MA: Springer US; 1984. https://doi.org/10.1007/978-1-4613-2687-8.
  • [146] Khan SU-D, Khan SU-D, Peng M. Nuclear power plant systems. Nucl. React. Technol. Dev. Util., Elsevier; 2020, p. 433–71. https://doi.org/10.1016/B978-0-12-818483-7.00014-7.
  • [147] Hussein EMA. Emerging small modular nuclear power reactors: A critical review. Phys Open 2020;5:100038. https://doi.org/10.1016/j.physo.2020.100038.
  • [148] Nuclear Fuel Behaviour Under Reactivity-initiated Accident (RIA) Conditions State-of-the-art Report 2010.
  • [149] Bhatia SC. Energy consuming and converting equipments. Adv Renew Energy Syst 2014:158–73. https://doi.org/10.1016/B978-1-78242-269-3.50006-1.
  • [150] Smith JC. Nuclear steam generator design. Steam Gener Nucl Power Plants 2017:35–53. https://doi.org/10.1016/B978-0-08-100894-2.00003-0.
  • [151] Buttery N. Water cooled thermal reactor designs, operation and fuel cycle. Nucl Fuel Cycle Sci Eng 2012:237–77. https://doi.org/10.1533/9780857096388.3.237.
  • [152] Liu Z, Fan J. Technology readiness assessment of Small Modular Reactor (SMR) designs. Prog Nucl Energy 2014;70:20–8. https://doi.org/10.1016/j.pnucene.2013.07.005.
  • [153] Sikorska D, Brzozowska J, Pawełkiewicz A, Psykała M, Błasiak P, Kolasiński P. Convective Heat Transfer in PWR, BWR, CANDU, SMR, and MSR Nuclear Reactors—A Review. Energies 2024;17:3652. https://doi.org/10.3390/en17153652.
  • [154] Garrett G, Watson J. Comparison of water, helium, and carbon dioxide as coolants for next generation power plants using TRACE. Ann Nucl Energy 2019;126:292–302. https://doi.org/10.1016/j.anucene.2018.11.016.
  • [155] Passive Safety Systems in Water Cooled Reactors: An Overview and Demonstration with Basic Principle Simulators. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY; 2019.
  • [156] Guillen DP. Review of Passive Heat Removal Strategies for Nuclear Microreactor Systems. Nucl Technol 2023;209:S21–40. https://doi.org/10.1080/00295450.2022.2055701.
  • [157] Sardar MAI, Rahman M, Rubini P. Enhancing Thermal–Hydraulic Performance in Nuclear Reactor Subchannels with Al2O3 Nanofluids: A CFD Analysis. Energies 2024;17:5486. https://doi.org/10.3390/en17215486.
  • [158] Sharma D, Pandey KM, Debbarma A, Choubey G. Numerical Investigation of heat transfer enhancement of SiO 2 -water based nanofluids in Light water nuclear reactor. Mater Today Proc 2017;4:10118–22. https://doi.org/10.1016/j.matpr.2017.06.332.
  • [159] Hamad EM, Khaffaf A, Yasin O, Abu El-Rub Z, Al-Gharabli S, Al-Kouz W, et al. Review of Nanofluids and Their Biomedical Applications. J Nanofluids 2021;10:463–77. https://doi.org/10.1166/jon.2021.1806.
  • [160] Wang C, Xiu Y, Zhang Y, Wang Y, Xu J, Yu W, et al. Recent advances in biotin-based therapeutic agents for cancer therapy. Nanoscale 2025;17:1812–73. https://doi.org/10.1039/D4NR03729D.
  • [161] Szwed M, Marczak A. Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment—The Current State of Knowledge. Cancers (Basel) 2024;16:1156. https://doi.org/10.3390/cancers16061156.
  • [162] Tang Y, Jin T, Flesch RCC. Effect of mass transfer and diffusion of nanofluid on the thermal ablation of malignant cells during magnetic hyperthermia. Appl Math Model 2020;83:122–35. https://doi.org/10.1016/j.apm.2020.02.010.
  • [163] Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance. Sci Prog 2024;107. https://doi.org/10.1177/00368504241228076.
  • [164] Firouzfar E, Soltanieh M, Noie SH, Saidi SH. Energy saving in HVAC systems using nanofluid. Appl Therm Eng 2011;31:1543–5. https://doi.org/10.1016/j.applthermaleng.2011.01.029.
  • [165] Jeanne N. A. Nanoparticles in Medical Imaging: Enhancing Contrast Agents. Res Invent J Sci Exp Sci 2024;4:31–6. https://doi.org/10.59298/RIJSES/2024/433136.
  • [166] Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem 2016;60:1–8. https://doi.org/10.1042/EBC20150001.
  • [167] Kulkarni MB, Ayachit NH, Aminabhavi TM. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022;12. https://doi.org/10.3390/bios12070543.
  • [168] Testa G, Persichetti G, Bernini R. Optofluidic biosensing: Devices, strategies, and applications. TrAC Trends Anal Chem 2024;178:117865. https://doi.org/10.1016/j.trac.2024.117865.
  • [169] Siavashy S, Soltani M, Rahimi S, Hosseinali M, Guilandokht Z, Raahemifar K. Recent advancements in microfluidic-based biosensors for detection of genes and proteins: Applications and techniques. Biosens Bioelectron X 2024;19:100489. https://doi.org/10.1016/j.biosx.2024.100489.
  • [170] Farooq U, Liu T, Jan A. Boundary Layer Analysis of Second-Order Magnetic Nanofluid Flow with Carbon Nanotubes and Gyrotactic Microorganisms for Medical Diagnostics. Bionanoscience 2025;15:113. https://doi.org/10.1007/s12668-024-01763-9.
  • [171] Mohite DD, Goyal A, Singh AS, Ansari MI, Patil KA, Yadav PD, et al. Improvement of thermal performance through nanofluids in industrial applications: A review on technical aspects. Mater Today Proc 2024. https://doi.org/10.1016/j.matpr.2024.04.083.
  • [172] Ponticorvo E, Iuliano M, Cirillo C, Maiorino A, Aprea C, Sarno M. Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid. Energies 2022;15:3059. https://doi.org/10.3390/en15093059.
  • [173] Bocanegra JA, Marchitto A, Misale M. Nanofluids in solar collectors: a comprehensive review focused on its sedimentation. Clean Technol Environ Policy 2024. https://doi.org/10.1007/s10098-024-02964-2.
  • [174] Christensen G, Younes H, Hong H, Smith P. Effects of solvent hydrogen bonding, viscosity, and polarity on the dispersion and alignment of nanofluids containing Fe2O3 nanoparticles. J Appl Phys 2015;118. https://doi.org/10.1063/1.4936171.
  • [175] Grzesik W. Nanofluid Assistance in Machining Processes- Properties, Mechanisms and Applications: a Review. J Mach Eng 2021:75–90. https://doi.org/10.36897/jme/133477.
  • [176] Li M, Yu T, Zhang R, Yang L, Li H, Wang W. MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid. Int J Adv Manuf Technol 2018;99:1735–53. https://doi.org/10.1007/s00170-018-2576-7.
  • [177] Hegab H, Kishawy HA, Umer U, Mohany A. A model for machining with nano-additives based minimum quantity lubrication. Int J Adv Manuf Technol 2019;102:2013–28. https://doi.org/10.1007/s00170-019-03294-0.
  • [178] Gupta MK, Jamil M, Wang X, Song Q, Liu Z, Mia M, et al. Performance Evaluation of Vegetable Oil-Based Nano-Cutting Fluids in Environmentally Friendly Machining of Inconel-800 Alloy. Materials (Basel) 2019;12:2792. https://doi.org/10.3390/ma12172792.
  • [179] Singh B, Sood S. Hybrid nanofluids preparation, thermo-physical properties, and applications: A Review. Hybrid Adv 2024;6:100192. https://doi.org/10.1016/j.hybadv.2024.100192.
  • [180] Ouabouch O, Kriraa M, Lamsaadi M. Stability, thermophsical properties of nanofluids, and applications in solar collectors: A review. AIMS Mater Sci 2021;8:659–84. https://doi.org/10.3934/matersci.2021040.
  • [181] Hwang Y, Lee J-K, Lee J-K, Jeong Y-M, Cheong S, Ahn Y-C, et al. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 2008;186:145–53. https://doi.org/10.1016/j.powtec.2007.11.020.
  • [182] Franco CA, Giraldo LJ, Candela CH, Bernal KM, Villamil F, Montes D, et al. Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant–Nanoparticle–Brine Interaction: From Laboratory Experiments to Oil Field Application. Nanomaterials 2020;10:1579. https://doi.org/10.3390/nano10081579.
  • [183] Bao Z, Bing N, Zhu X, Xie H, Yu W. Ti3C2Tx MXene contained nanofluids with high thermal conductivity, super colloidal stability and low viscosity. Chem Eng J 2021;406:126390. https://doi.org/10.1016/j.cej.2020.126390.
  • [184] Kilikevičius S, Kvietkaitė S, Mishnaevsky L, Omastová M, Aniskevich A, Zeleniakienė D. Novel Hybrid Polymer Composites with Graphene and MXene Nano-Reinforcements: Computational Analysis. Polymers (Basel) 2021;13:1013. https://doi.org/10.3390/polym13071013.
  • [185] Shaik AH, Shaik S, Goyal S, Chandan MR, Veza I, Buradi A, et al. A Review on Environmental and Economic Impact of 2D Nanomaterials‐Based Heat Transfer Fluids. J Nanomater 2022;2022. https://doi.org/10.1155/2022/3443360.
  • [186] Reddy GS, Sumalatha V. Nanofluids: Bridging nanotechnology and fluid dynamics for enhanced thermal performance. J Phys Conf Ser 2024;2837:012053. https://doi.org/10.1088/1742-6596/2837/1/012053.
  • [187] Said Z, Bellos E, Muhammad Ali H, Rahman S, Tzivanidis C. Nanofluids, turbulators, and novel working fluids for heat transfer processes and energy applications: Current status and prospective. Appl Therm Eng 2025;258:124478. https://doi.org/10.1016/j.applthermaleng.2024.124478.
  • [188] Adil A, Farrukh A, Hassan F, Jamil F, Khiadani M, Saeed S, et al. Magnetic nanofluids preparation and its thermal applications: a recent review. J Therm Anal Calorim 2024;149:9001–33. https://doi.org/10.1007/s10973-024-13348-5.
  • [189] Arslan O, Ozgur MA, Yildizay HD, Kose R. Fuel Effects on Optimum Insulation Thickness: An Exergitic Approach. Energy Sources, Part A Recover Util Environ Eff 2009;32:128–47. https://doi.org/10.1080/15567030903196327.
  • [190] Eze AH, Lakatos Á. Applications of thermal insulation materials by aircraft. J Phys Conf Ser 2023;2628:012018. https://doi.org/10.1088/1742-6596/2628/1/012018.
  • [191] Ali N, Bahman AM, Aljuwayhel NF, Ebrahim SA, Mukherjee S, Alsayegh A. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials 2021;11:1628. https://doi.org/10.3390/nano11061628.

Nanofluids and engineering applications: A review

Year 2025, Issue: 060, 126 - 149, 25.03.2025
https://doi.org/10.59313/jsr-a.1634164

Abstract

With the development of technology, the search for advanced materials has accelerated. Nanomaterials have emerged as an important material group in this search and have found a place for themselves in many different areas. Nanofluids, which are formed by dispersing nanoparticles in basic liquids such as water, ethylene glycol, or oils, have emerged as a very innovative method in the applications of nanoparticles. They have also found a wide range of applications. The improved thermophysical properties of nanofluids have made this research area important in engineering. Nanofluids have gained a unique area, especially in cooling and lubrication systems due to their higher thermal conductivity, viscosity, and convective heat transfer properties compared to traditional liquids. Nanofluids also hold promises in solar energy systems, defense industry systems, nuclear plants, biomedical applications, automotive, and aviation industries where efficient cooling is important. It has also been shown that the use of nanofluids in processing and lubrication processes increases product quality and minimizes wear. Despite these benefits, problems such as stability, cost, and long-term performance in nanofluids continue. These challenges continue to be investigated with a focus on optimizing nanoparticle concentration, developing dispersion methods, and analyzing the environmental impact of nanofluids. Computational and experimental studies will help to understand the flow behavior and heat transfer processes of nanofluids under different operating conditions. The aim of this paper is to review existing nanofluid studies. It provides an overview of the current developments and applications in the field of engineering, focusing on their functions in heat transfer, energy systems and industrial processes.

Ethical Statement

None

Supporting Institution

None

Thanks

None

References

  • [1] Sheremet MA. Applications of Nanofluids. Nanomaterials 2021;11:1716. https://doi.org/10.3390/nano11071716.
  • [2] Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022;12:1386. https://doi.org/10.3390/catal12111386.
  • [3] Bayat R, Yildizay HD, Şen F. Thermopower energy waves propagation in novel generation carbon fibers/fuel composite. Fuel 2025;385:134112. https://doi.org/10.1016/j.fuel.2024.134112.
  • [4] Şen B, Demirkan B, Savk A, Kartop R, Nas MS, Alma MH, et al. High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction. J Mol Liq 2018;268:807–12. https://doi.org/10.1016/J.MOLLIQ.2018.07.117.
  • [5] Nagraik R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar AP. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review. Sensors Int 2021;2:100089. https://doi.org/10.1016/J.SINTL.2021.100089.
  • [6] Eris S, Daşdelen Z, Sen F. Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation. Int J Hydrogen Energy 2018;43:385–90. https://doi.org/10.1016/J.IJHYDENE.2017.11.063.
  • [7] Şen F, Gökaǧaç G. Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol. Energy and Fuels 2008;22:1858–64. https://doi.org/10.1021/EF700575T.
  • [8] Şen F, Demirbaş Ö, Çalımlı MH, Aygün A, Alma MH, Nas MS. The dye removal from aqueous solution using polymer composite films. Appl Water Sci 2018;8:1–9. https://doi.org/10.1007/S13201-018-0856-X/TABLES/5.
  • [9] Nesrin K, Yusuf C, Ahmet K, Ali SB, Muhammad NA, Suna S, et al. Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities. J Pharm Biomed Anal 2020;179:112993. https://doi.org/10.1016/J.JPBA.2019.112993.
  • [10] Ayranci R, Baskaya G, Guzel M, Bozkurt S, Ak M, Savk A, et al. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Structures & Nano-Objects 2017;11:13–9. https://doi.org/10.1016/J.NANOSO.2017.05.008.
  • [11] Günbatar S, Aygun A, Karataş Y, Gülcan M, Şen F. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J Colloid Interface Sci 2018;530:321–7. https://doi.org/10.1016/J.JCIS.2018.06.100.
  • [12] Khand NH, Solangi AR, Ameen S, Fatima A, Buledi JA, Mallah A, et al. A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE. J Food Meas Charact 2021;15:3720–30. https://doi.org/10.1007/S11694-021-00956-0/TABLES/2.
  • [13] Göksu H, Yıldız Y, Çelik B, Yazıcı M, Kılbaş B, Şen F. Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane. ChemistrySelect 2016;1:953–8. https://doi.org/10.1002/SLCT.201600207.
  • [14] Yıldız Y, Esirden İ, Erken E, Demir E, Kaya M, Şen F. Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes. ChemistrySelect 2016;1:1695–701. https://doi.org/10.1002/SLCT.201600265.
  • [15] Gulbagca F, Aygün A, Gülcan M, Ozdemir S, Gonca S, Şen F. Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities. Appl Organomet Chem 2021;35:e6272. https://doi.org/10.1002/AOC.6272. [16] Ganji DD, Kachapi SHH. Introduction to Nanotechnology, Nanomechanics, Micromechanics, and Nanofluid. Appl. Nonlinear Syst. Nanomechanics Nanofluids, Elsevier; 2015, p. 1–11. https://doi.org/10.1016/B978-0-323-35237-6.00001-7.
  • [17] Abrahamson JT, Sempere B, Walsh MP, Forman JM, Şen F, Şen S, et al. Excess thermopower and the theory of thermopower waves. ACS Nano 2013;7:6533–44. https://doi.org/10.1021/NN402411K/SUPPL_FILE/NN402411K_SI_001.PDF.
  • [18] Cherif A, Nebbali R, Sheffield JW, Doner N, Sen F. Numerical investigation of hydrogen production via autothermal reforming of steam and methane over Ni/Al2O3 and Pt/Al2O3 patterned catalytic layers. Int J Hydrogen Energy 2021;46:37521–32. https://doi.org/10.1016/J.IJHYDENE.2021.04.032.
  • [19] Bacha H Ben, Ullah N, Hamid A, Shah NA. A comprehensive review on nanofluids: Synthesis, cutting-edge applications, and future prospects. Int J Thermofluids 2024;22:100595. https://doi.org/10.1016/j.ijft.2024.100595.
  • [20] Hashimoto S, Yamaguchi S, Harada M, Nakajima K, Kikuchi T, Ohishi K. Anomalous behavior of liquid molecules near solid nanoparticles: Novel interpretation on thermal conductivity enhancement in nanofluids. J Colloid Interface Sci 2023;638:475–86. https://doi.org/10.1016/j.jcis.2023.01.101.
  • [21] Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—A review. Renew Sustain Energy Rev 2017;75:451–60. https://doi.org/10.1016/j.rser.2016.11.010.
  • [22] Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019;12:908–31. https://doi.org/10.1016/j.arabjc.2017.05.011.
  • [23] Chen J, Wang H, Xie P. Pavement temperature prediction: Theoretical models and critical affecting factors. Appl Therm Eng 2019;158:113755. https://doi.org/10.1016/j.applthermaleng.2019.113755.
  • [24] Donat Yildizay H, Aydin Ö, Böke YE. Investigation of Pıpe Failures in Thermal Power Plants. Bilecik Şeyh Edebali Üniversitesi Fen Bilim Derg 2022.
  • [25] Awais M, Ullah N, Ahmad J, Sikandar F, Ehsan MM, Salehin S, et al. Heat transfer and pressure drop performance of Nanofluid: A state-of- the-art review. Int J Thermofluids 2021;9:100065. https://doi.org/10.1016/j.ijft.2021.100065.
  • [26] Rahman MA, Hasnain SMM, Pandey S, Tapalova A, Akylbekov N, Zairov R. Review on Nanofluids: Preparation, Properties, Stability, and Thermal Performance Augmentation in Heat Transfer Applications. ACS Omega 2024. https://doi.org/10.1021/acsomega.4c03279.
  • [27] Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors 2022;13:40. https://doi.org/10.3390/bios13010040.
  • [28] Bekmezci M, Akin M, Gules GN, Bayat R, Sen F. Innovative chelation strategies for facile synthesis of bimetallic nanomaterials with remarkable photocatalytic and biochemical activities. Next Res 2024;1:100001. https://doi.org/10.1016/j.nexres.2024.100001.
  • [29] Yilmaz B, Bayat R, Bekmezci M, Şen F. Metal organic framework-based nanocomposites for alcohol fuel cells. Nanomater Direct Alcohol Fuel Cells 2021:353–70. https://doi.org/10.1016/B978-0-12-821713-9.00006-8.
  • [30] Bingül Reçber Z, Burhan H, Bayat R, Nas MS, Calimli MH, Demirbas Ö, et al. Fabrication of activated carbon supported modified with bimetallic-platin ruthenium nano sorbent for removal of azo dye from aqueous media using enhanced ultrasonic wave. Environ Pollut 2022;302:119033. https://doi.org/10.1016/J.ENVPOL.2022.119033.
  • [31] Karimi-Maleh H, Khataee A, Karimi F, Baghayeri M, Fu L, Rouhi J, et al. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 2022;291:132928. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132928.
  • [32] Goksu H, Bekmezci M, Erduran V, Şen F. Bimetallic nanomaterials for direct alcohol fuel cells. Nanomater Direct Alcohol Fuel Cells 2021:145–56. https://doi.org/10.1016/B978-0-12-821713-9.00017-2.
  • [33] Yaqoob L, Noor T, Iqbal N. Recent progress in development of efficient electrocatalyst for methanol oxidation reaction in direct methanol fuel cell. Int J Energy Res 2021;45:6550–83. https://doi.org/10.1002/er.6316.
  • [34] Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, et al. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024;16:636. https://doi.org/10.3390/nu16050636.
  • [35] Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019;25:112. https://doi.org/10.3390/molecules25010112.
  • [36] Nur Maran F, Turk I, Akkoyun B, Talaat Fawzy Meligy M, Lubiceva E, Ikballi D, et al. Nanotechnology, and its versatile applications in medicine, environment, energy, textiles, food industry. Int J Boron Sci Nanotechnol 2023;18.
  • [37] Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polym 2023, Vol 15, Page 1596 2023;15:1596. https://doi.org/10.3390/POLYM15071596.
  • [38] Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022 201 2022;20:1–29. https://doi.org/10.1186/S12951-022-01477-8.
  • [39] Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Mol 2023, Vol 28, Page 4932 2023;28:4932. https://doi.org/10.3390/MOLECULES28134932.
  • [40] Saleh HM, Hassan AI. Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices. Sustainability 2023;15:10891. https://doi.org/10.3390/su151410891.
  • [41] Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol 2023;14. https://doi.org/10.3389/fmicb.2023.1155622.
  • [42] Modi KV, Patel PR, Patel SK. Applicability of mono-nanofluid and hybrid-nanofluid as a technique to improve the performance of solar still: A critical review. J Clean Prod 2023;387:135875. https://doi.org/10.1016/j.jclepro.2023.135875.
  • [43] Choi SUS. Nanofluids: A New Field of Scientific Research and Innovative Applications. Heat Transf Eng 2008;29:429–31. https://doi.org/10.1080/01457630701850778.
  • [44] Das SK, Choi SUS. A Review of Heat Transfer in Nanofluids, 2009, p. 81–197. https://doi.org/10.1016/S0065-2717(08)41002-X.
  • [45] Pordanjani AH, Aghakhani S, Afrand M, Sharifpur M, Meyer JP, Xu H, et al. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. J Clean Prod 2021;320:128573. https://doi.org/10.1016/j.jclepro.2021.128573.
  • [46] Godson L, Raja B, Mohan Lal D, Wongwises S. Enhancement of heat transfer using nanofluids—An overview. Renew Sustain Energy Rev 2010;14:629–41. https://doi.org/10.1016/j.rser.2009.10.004.
  • [47] Alirezaie A, Hajmohammad MH, Alipour A, Salari M. Do nanofluids affect the future of heat transfer?“A benchmark study on the efficiency of nanofluids.” Energy 2018;157:979–89. https://doi.org/10.1016/j.energy.2018.05.060.
  • [48] Bobbo S, Buonomo B, Manca O, Vigna S, Fedele L. Analysis of the Parameters Required to Properly Define Nanofluids for Heat Transfer Applications. Fluids 2021;6:65. https://doi.org/10.3390/fluids6020065.
  • [49] Chaichan MT, Kazem HA, Al-Ghezi MKS, Al-Waeli AHA, Ali AJ, Sopian K, et al. Effect of Different Preparation Parameters on the Stability and Thermal Conductivity of MWCNT-Based Nanofluid Used for Photovoltaic/Thermal Cooling. Sustainability 2023;15:7642. https://doi.org/10.3390/su15097642.
  • [50] Pereira J, Souza R, Moita A, Moreira A. Nanofluids and Ionic Fluids as Liquid Electrodes: An Overview on Their Properties and Potential Applications. Processes 2023;11:3189. https://doi.org/10.3390/pr11113189.
  • [51] Minea AA, Moldoveanu MG. Studies on Al2O3, CuO, and TiO2 water-based nanofluids: A comparative approach in laminar and turbulent flow. J Eng Thermophys 2017;26:291–301. https://doi.org/10.1134/S1810232817020114.
  • [52] Buschmann MH, Azizian R, Kempe T, Juliá JE, Martínez-Cuenca R, Sundén B, et al. Correct interpretation of nanofluid convective heat transfer. Int J Therm Sci 2018;129:504–31. https://doi.org/10.1016/j.ijthermalsci.2017.11.003.
  • [53] Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev 2017;76:1134–52. https://doi.org/10.1016/j.rser.2017.03.113.
  • [54] Said Z, Sundar LS, Tiwari AK, Ali HM, Sheikholeslami M, Bellos E, et al. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys Rep 2022;946:1–94. https://doi.org/10.1016/j.physrep.2021.07.002.
  • [55] Bhanushali S, Jason NN, Ghosh P, Ganesh A, Simon GP, Cheng W. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry. ACS Appl Mater Interfaces 2017;9:18925–35. https://doi.org/10.1021/acsami.7b03339.
  • [56] Wu H, Luo Y, Li G, Yuan Y, Chang J, Kang N, et al. Enhanced oil recovery using amphiphilic nanomaterials with tailored functionalities: a review. J Mol Liq 2025:127190. https://doi.org/10.1016/j.molliq.2025.127190.
  • [57] Owuna FJ. Stability of vegetable based oils used in the formulation of ecofriendly lubricants – a review. Egypt J Pet 2020;29:251–6. https://doi.org/10.1016/j.ejpe.2020.09.003.
  • [58] Hong R, Cima MJ, Weissleder R, Josephson L. Magnetic microparticle aggregation for viscosity determination by MR. Magn Reson Med 2008;59:515–20. https://doi.org/10.1002/mrm.21526.
  • [59] Yang L, Tian J, Ding Y, Alagumalai A, Selimefendigil F, Aghbashlo M, et al. The physics of phase transition phenomena enhanced by nanoparticles. Appl Phys Rev 2025;12. https://doi.org/10.1063/5.0200714.
  • [60] Afzal A, Nawfal I, Mahbubul IM, Kumbar SS. An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim 2019;135:393–418. https://doi.org/10.1007/s10973-018-7144-8.
  • [61] Gokapai V, Pothana P, Ling K. Nanoparticles in Drilling Fluids: A Review of Types, Mechanisms, Applications, and Future Prospects. Eng 2024;5:2462–95. https://doi.org/10.3390/eng5040129.
  • [62] Yu W, Xie H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J Nanomater 2012;2012. https://doi.org/10.1155/2012/435873.
  • [63] Kalsi S, Kumar S, Kumar A, Alam T, Dobrotă D. Thermophysical properties of nanofluids and their potential applications in heat transfer enhancement: A review. Arab J Chem 2023;16:105272. https://doi.org/10.1016/j.arabjc.2023.105272.
  • [64] Moita A, Moreira A, Pereira J. Nanofluids for the Next Generation Thermal Management of Electronics: A Review. Symmetry (Basel) 2021;13:1362. https://doi.org/10.3390/sym13081362.
  • [65] Gujar JG, Patil SS, Sonawane SS. A Review on Nanofluids: Synthesis, Stability, and Uses in the Manufacturing Industry. Curr Nanomater 2023;8:303–18. https://doi.org/10.2174/2405461507666220630153637.
  • [66] Souza RR, Gonçalves IM, Rodrigues RO, Minas G, Miranda JM, Moreira ALN, et al. Recent advances on the thermal properties and applications of nanofluids: From nanomedicine to renewable energies. Appl Therm Eng 2022;201:117725. https://doi.org/10.1016/j.applthermaleng.2021.117725.
  • [67] Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, et al. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys Rep 2020;843:1–81. https://doi.org/10.1016/j.physrep.2019.12.001.
  • [68] Gal S, Cabaleiro D, Hassen W, Nasri A, Lafue Y, Pham-Huu C, et al. Thermophysical Profile of Industrial Graphene Water-Based Nanofluids. Nanomaterials 2024;14:1401. https://doi.org/10.3390/nano14171401.
  • [69] Genc O. Proposal of a new surfactant for CuO/water nanofluids: Optimization of surfactant ratio and ultrasonication time. Powder Technol 2024;444:120074. https://doi.org/10.1016/j.powtec.2024.120074.
  • [70] Pambudi NA, Sarifudin A, Firdaus RA, Ulfa DK, Gandidi IM, Romadhon R. The immersion cooling technology: Current and future development in energy saving. Alexandria Eng J 2022;61:9509–27. https://doi.org/10.1016/j.aej.2022.02.059.
  • [71] Azmi WH, Sharma K V, Mamat R, Alias ABS, Misnon II. Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conf Ser Mater Sci Eng 2012;36:012029. https://doi.org/10.1088/1757-899X/36/1/012029.
  • [72] Zubair MM, Seraj M, Faizan M, Anas M, Yahya SM. Experimental study on heat transfer of an engine radiator with TiO2/EG-water nano-coolant. SN Appl Sci 2021;3:434. https://doi.org/10.1007/s42452-021-04441-7.
  • [73] Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Golbahar Haghighi MR. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Eng J 2017;56:161–70. https://doi.org/10.1016/j.aej.2016.09.019.
  • [74] Eneren P, Aksoy YT, Vetrano MR. Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review. Energies 2022;15:2525. https://doi.org/10.3390/en15072525.
  • [75] Said Z, Pandey AK, Tiwari AK, Kalidasan B, Jamil F, Thakur AK, et al. Nano-enhanced phase change materials: Fundamentals and applications. Prog Energy Combust Sci 2024;104:101162. https://doi.org/10.1016/j.pecs.2024.101162.
  • [76] Liang G, Mudawar I. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int J Heat Mass Transf 2019;136:324–54. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086.
  • [77] Wang R, Yin Y, Li Q, Hai X, Deng N, Huang C. Heat Transfer Enhancement of Energy Pile with Nanofluids as Heat Carrier. Adv Civ Eng 2023;2023:1–15. https://doi.org/10.1155/2023/2035247.
  • [78] Iftikhar N, Rehman A, Sadaf H. Theoretical investigation for convective heat transfer on Cu/water nanofluid and (SiO2-copper)/water hybrid nanofluid with MHD and nanoparticle shape effects comprising relaxation and contraction phenomenon. Int Commun Heat Mass Transf 2021;120:105012. https://doi.org/10.1016/j.icheatmasstransfer.2020.105012.
  • [79] Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf 2013;41:41–6. https://doi.org/10.1016/j.icheatmasstransfer.2012.11.004.
  • [80] Kazem HA, Chaichan MT, Al-Waeli AHA. Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: an experimental study. Energy Sources, Part A Recover Util Environ Eff 2022;44:3673–91. https://doi.org/10.1080/15567036.2022.2070305.
  • [81] Freitas SMO. Nanofluids for heat exchanger improvement: a numerical approach. 2012.
  • [82] Kulkarni DP, Das DK, Vajjha RS. Application of nanofluids in heating buildings and reducing pollution. Appl Energy 2009;86:2566–73. https://doi.org/10.1016/j.apenergy.2009.03.021.
  • [83] Buongiorno J, Hu L-W, Kim SJ, Hannink R, Truong B, Forrest E. Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps. Nucl Technol 2008;162:80–91. https://doi.org/10.13182/NT08-A3934.
  • [84] Tao Q, Zhong F, Deng Y, Wang Y, Su C. A Review of Nanofluids as Coolants for Thermal Management Systems in Fuel Cell Vehicles. Nanomaterials 2023;13:2861. https://doi.org/10.3390/nano13212861.
  • [85] OWENSIII D, PEPPAS N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.
  • [86] Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications. Nanotechnol Sci Appl 2020;Volume 13:47–59. https://doi.org/10.2147/NSA.S260374.
  • [87] Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003;36:R167–81. https://doi.org/10.1088/0022-3727/36/13/201.
  • [88] KOTHANDAPANI M, PRAKASH J. THE PERISTALTIC TRANSPORT OF CARREAU NANOFLUIDS UNDER EFFECT OF A MAGNETIC FIELD IN A TAPERED ASYMMETRIC CHANNEL: APPLICATION OF THE CANCER THERAPY. J Mech Med Biol 2015;15:1550030. https://doi.org/10.1142/S021951941550030X.
  • [89] Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, et al. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics 2023;15:1868. https://doi.org/10.3390/PHARMACEUTICS15071868.
  • [90] Hsu C-Y, Rheima AM, Kadhim MM, Ahmed NN, Mohammed SH, Abbas FH, et al. An overview of nanoparticles in drug delivery: Properties and applications. South African J Chem Eng 2023;46:233–70. https://doi.org/10.1016/j.sajce.2023.08.009.
  • [91] Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Front Nanotechnol 2021;3:644564. https://doi.org/10.3389/FNANO.2021.644564/BIBTEX.
  • [92] He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed Res Int 2013;2013:578290. https://doi.org/10.1155/2013/578290.
  • [93] Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674–9. https://doi.org/10.1016/J.CBPA.2005.10.005.
  • [94] Choi SUS. Nanofluids: From vision to reality through research. J Heat Transfer 2009;131:1–9. https://doi.org/10.1115/1.3056479.
  • [95] Mondol JD, Buonomano A, Das B, Pereira J, Souza R, Moreira A, et al. A Review on the Nanofluids-PCMs Integrated Solutions for Solar Thermal Heat Transfer Enhancement Purposes. Technol 2023, Vol 11, Page 166 2023;11:166. https://doi.org/10.3390/TECHNOLOGIES11060166.
  • [96] Ho MLG, Oon CS, Tan L-L, Wang Y, Hung YM. A review on nanofluids coupled with extended surfaces for heat transfer enhancement. Results Eng 2023;17:100957. https://doi.org/10.1016/j.rineng.2023.100957.
  • [97] Babar H, Sajid M, Ali H. Viscosity of hybrid nanofluids: A critical review. Therm Sci 2019;23:1713–54. https://doi.org/10.2298/TSCI181128015B.
  • [98] Ma B, Banerjee D. A Review of Nanofluid Synthesis. Adv. Nanomater., Cham: Springer International Publishing; 2018, p. 135–76. https://doi.org/10.1007/978-3-319-64717-3_6.
  • [99] Hirudayanathan HP, Debnath S, Anwar M, Johar MB, Elumalai NK, Mohammed Iqbal U. A review on influence of nanoparticle parameters on viscosity of nanofluids and machining performance in minimum quantity lubrication. Proc Inst Mech Eng Part E J Process Mech Eng 2023. https://doi.org/10.1177/09544089231189668.
  • [100] Mehta B, Subhedar D, Panchal H, Said Z. Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid – A review. J Mol Liq 2022;364:120034. https://doi.org/10.1016/j.molliq.2022.120034.
  • [101] Pereira JE, Moita AS, Moreira ALN. The pressing need for green nanofluids: A review. J Environ Chem Eng 2022;10:107940. https://doi.org/10.1016/j.jece.2022.107940.
  • [102] Khatai S, Kumar R, Sahoo AK, Panda A, Das D. Metal-oxide based nanofluid application in turning and grinding processes: A comprehensive review. Mater Today Proc 2020;26:1707–13. https://doi.org/10.1016/j.matpr.2020.02.360.
  • [103] Elango T, Kannan A, Kalidasa Murugavel K. Performance study on single basin single slope solar still with different water nanofluids. Desalination 2015;360:45–51. https://doi.org/10.1016/j.desal.2015.01.004.
  • [104] Krishna Varma KPV, Kishore PS, Durga Prasad PV. Enhancement of Heat Transfer Using Fe3O4 / Water Nanofluid with Varying Cut-Radius Twisted Tape Inserts. Int J Appl Eng Res 2017;12:7088. https://doi.org/10.37622/IJAER/12.18.2017.7088-7095.
  • [105] Hussein FM, Faraj J, Jabbar R. Experimental Investigation of Adding Nano-Particles to PCM for Heating Applications. J Mech Eng Autom 2018;8:32–7. https://doi.org/DOI: 10.5923/j.jmea.20180801.03.
  • [106] Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Acc Chem Res 2008;41:1721–30. https://doi.org/10.1021/ar800035u.
  • [107] Kishore PS, Sireesha V, Sree Harsha V, Dharma Rao V, Brusly Solomon A. Preparation, characterization and thermo-physical properties of Cu-graphene nanoplatelets hybrid nanofluids. Mater Today Proc 2020;27:610–4. https://doi.org/10.1016/j.matpr.2019.12.108.
  • [108] Baby TT, Sundara R. Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids. J Phys Chem C 2011;115:8527–33. https://doi.org/10.1021/jp200273g.
  • [109] Ho CJ, Huang JB, Tsai PS, Yang YM. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transf 2010;37:490–4. https://doi.org/10.1016/j.icheatmasstransfer.2009.12.007.
  • [110] Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 2011;21:9702. https://doi.org/10.1039/c0jm04106h.
  • [111] Phillips L. Solar energy. Manag. Glob. Warm., Elsevier; 2019, p. 317–32. https://doi.org/10.1016/B978-0-12-814104-5.00009-0.
  • [112] Jaiswal KK, Chowdhury CR, Yadav D, Verma R, Dutta S, Jaiswal KS, et al. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022;7:100118. https://doi.org/10.1016/j.nexus.2022.100118.
  • [113] Ukoba K, Yoro KO, Eterigho-Ikelegbe O, Ibegbulam C, Jen T-C. Adaptation of solar energy in the Global South: Prospects, challenges and opportunities. Heliyon 2024;10:e28009. https://doi.org/10.1016/j.heliyon.2024.e28009.
  • [114] Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev 2014;39:748–64. https://doi.org/10.1016/j.rser.2014.07.113.
  • [115] Arnaoutakis GE, Katsaprakakis DA. Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems. Energies 2024;17:556. https://doi.org/10.3390/en17030556.
  • [116] Ahmed YE, Maghami MR, Pasupuleti J, Danook SH, Basim Ismail F. Overview of Recent Solar Photovoltaic Cooling System Approach. Technologies 2024;12:171. https://doi.org/10.3390/technologies12090171.
  • [117] Dwivedi P, Sudhakar K, Soni A, Solomin E, Kirpichnikova I. Advanced cooling techniques of P.V. modules: A state of art. Case Stud Therm Eng 2020;21:100674. https://doi.org/10.1016/j.csite.2020.100674.
  • [118] Alami AH, Olabi AG, Mdallal A, Rezk A, Radwan A, Rahman SMA, et al. Concentrating solar power (CSP) technologies: Status and analysis. Int J Thermofluids 2023;18:100340. https://doi.org/10.1016/j.ijft.2023.100340.
  • [119] Salehi R, Jahanbakhshi A, Ooi JB, Rohani A, Golzarian MR. Study on the performance of solar cells cooled with heatsink and nanofluid added with aluminum nanoparticle. Int J Thermofluids 2023;20:100445. https://doi.org/10.1016/j.ijft.2023.100445.
  • [120] Janus J, Filipowska M, Jabłoński H, Wieliński M, Sornek K. Overview of Technologies for Solar Systems and Heat Storage: The Use of Computational Fluid Dynamics for Performance Analysis and Optimization. Energies 2024;17:6001. https://doi.org/10.3390/en17236001.
  • [121] Shirazi A, Taylor RA, Morrison GL, White SD. Solar-powered absorption chillers: A comprehensive and critical review. Energy Convers Manag 2018;171:59–81. https://doi.org/10.1016/j.enconman.2018.05.091.
  • [122] Moravej M, Bozorg MV, Guan Y, Li LKB, Doranehgard MH, Hong K, et al. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustain Energy Technol Assessments 2020;40:100783. https://doi.org/10.1016/j.seta.2020.100783.
  • [123] Gao Y, Xi Y, Zhenzhong Y, Sasmito A, Mujumdar A, Wang L. Experimental investigation of specific heat of aqueous graphene oxide Al2O3 hybrid nanofluid. Therm Sci 2021;25:515–25. https://doi.org/10.2298/TSCI190404381G.
  • [124] Bai Y, Chow TT, Ménézo C, Dupeyrat P. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application. Int J Photoenergy 2012;2012:1–13. https://doi.org/10.1155/2012/265838.
  • [125] Wang Y, Boulic M, Phipps R, Plagmann M, Cunningham C. Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand. Energies 2020;13:1415. https://doi.org/10.3390/en13061415.
  • [126] Saeed FR, Al-Dulaimi MA. Numerical investigation for convective heat transfer of nanofluid laminar flow inside a circular pipe by applying various models. Arch Thermodyn 2023. https://doi.org/10.24425/ather.2021.136948.
  • [127] Macdevette MM, Myers · T G, Wetton · B. Boundary layer analysis and heat transfer of a nanofluid. Prog Ind Math ECMI 2016.
  • [128] Alibar M, Aydin D. Experimental Analysis of a Parabolic Trough Collector Performance Under Mediterranean Climate Conditions. El-Cezeri Fen ve Mühendislik Derg 2021. https://doi.org/10.31202/ecjse.884283.
  • [129] Khan WA, Shaikh K, Nawaz R, Kazi SN, Mohd Zubir MN. Enhancement of heat transfer with nanofluids and its applications in heat exchangers, 2024, p. 101–28. https://doi.org/10.1016/bs.aiht.2024.05.001.
  • [130] Said Z, Hachicha AA, Aberoumand S, Yousef BAA, Sayed ET, Bellos E. Recent advances on nanofluids for low to medium temperature solar collectors: energy, exergy, economic analysis and environmental impact. Prog Energy Combust Sci 2021;84:100898. https://doi.org/10.1016/j.pecs.2020.100898.
  • [131] Rose BAJ, Singh H, Verma N, Tassou S, Suresh S, Anantharaman N, et al. Investigations into nanofluids as direct solar radiation collectors. Sol Energy 2017;147:426–31. https://doi.org/10.1016/j.solener.2017.03.063.
  • [132] Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, et al. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett 2007;7:2758–63. https://doi.org/10.1021/nl071254m.
  • [133] Ladjevardi SM, Asnaghi A, Izadkhast PS, Kashani AH. Applicability of graphite nanofluids in direct solar energy absorption. Sol Energy 2013;94:327–34. https://doi.org/10.1016/j.solener.2013.05.012.
  • [134] Tyagi H, Phelan P, Prasher R. Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. J Sol Energy Eng 2009;131. https://doi.org/10.1115/1.3197562.
  • [135] Nguyen L V., Kosinski P, Balakin B V., Kosinska A. Direct absorption solar collector: Use of nanofluids and biodegradable colloids. Int J Therm Sci 2023;190:108292. https://doi.org/10.1016/j.ijthermalsci.2023.108292.
  • [136] L’Annunziata MF. Neutron Radiation. Radioactivity 2016:361–89. https://doi.org/10.1016/B978-0-444-63489-4.00010-1.
  • [137] Soto GH, Martinez-Cobas X. Nuclear energy generation’s impact on the CO2 emissions and ecological footprint among European Union countries. Sci Total Environ 2024;945:173844. https://doi.org/10.1016/j.scitotenv.2024.173844.
  • [138] Kessides IN. The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise. Energy Policy 2012;48:185–208. https://doi.org/10.1016/j.enpol.2012.05.008.
  • [139] Rouault J, Chellapandi P, Raj B, Dufour P, Latge C, Paret L, et al. Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety. Handb. Nucl. Eng., Boston, MA: Springer US; 2010, p. 2321–710. https://doi.org/10.1007/978-0-387-98149-9_21.
  • [140] Sayed ET;, Olabi AG;, Alami AH;, Radwan A;, Mdallal A;, Rezk A;, et al. Renewable Energy and Energy Storage Systems. Energies 2023, Vol 16, Page 1415 2023;16:1415. https://doi.org/10.3390/EN16031415.
  • [141] Temurçin K, Aliağaoğlu A. Nuclear energy and reality of nuclear energy in Turkey in the light of discussions. Co 2003;1:25–39. https://doi.org/10.1501/cogbil_0000000034.
  • [142] Roeser S. Nuclear Energy, Risk, and Emotions. Philos Technol 2011;24:197–201. https://doi.org/10.1007/s13347-011-0027-6.
  • [143] Temurçin K, Aliağaoğlu A. Nuclear energy and reality of nuclear energy in Turkey in the light of discussions. Coğrafi Bilim Derg 2003;1:25–39. https://doi.org/10.1501/Cogbil_0000000034.
  • [144] Letcher TM (Trevor M. Future energy : improved, sustainable and clean options for our planet. Elsevier; 2008.
  • [145] Lewins J, Becker M, editors. Advances in Nuclear Science and Technology. vol. 16. Boston, MA: Springer US; 1984. https://doi.org/10.1007/978-1-4613-2687-8.
  • [146] Khan SU-D, Khan SU-D, Peng M. Nuclear power plant systems. Nucl. React. Technol. Dev. Util., Elsevier; 2020, p. 433–71. https://doi.org/10.1016/B978-0-12-818483-7.00014-7.
  • [147] Hussein EMA. Emerging small modular nuclear power reactors: A critical review. Phys Open 2020;5:100038. https://doi.org/10.1016/j.physo.2020.100038.
  • [148] Nuclear Fuel Behaviour Under Reactivity-initiated Accident (RIA) Conditions State-of-the-art Report 2010.
  • [149] Bhatia SC. Energy consuming and converting equipments. Adv Renew Energy Syst 2014:158–73. https://doi.org/10.1016/B978-1-78242-269-3.50006-1.
  • [150] Smith JC. Nuclear steam generator design. Steam Gener Nucl Power Plants 2017:35–53. https://doi.org/10.1016/B978-0-08-100894-2.00003-0.
  • [151] Buttery N. Water cooled thermal reactor designs, operation and fuel cycle. Nucl Fuel Cycle Sci Eng 2012:237–77. https://doi.org/10.1533/9780857096388.3.237.
  • [152] Liu Z, Fan J. Technology readiness assessment of Small Modular Reactor (SMR) designs. Prog Nucl Energy 2014;70:20–8. https://doi.org/10.1016/j.pnucene.2013.07.005.
  • [153] Sikorska D, Brzozowska J, Pawełkiewicz A, Psykała M, Błasiak P, Kolasiński P. Convective Heat Transfer in PWR, BWR, CANDU, SMR, and MSR Nuclear Reactors—A Review. Energies 2024;17:3652. https://doi.org/10.3390/en17153652.
  • [154] Garrett G, Watson J. Comparison of water, helium, and carbon dioxide as coolants for next generation power plants using TRACE. Ann Nucl Energy 2019;126:292–302. https://doi.org/10.1016/j.anucene.2018.11.016.
  • [155] Passive Safety Systems in Water Cooled Reactors: An Overview and Demonstration with Basic Principle Simulators. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY; 2019.
  • [156] Guillen DP. Review of Passive Heat Removal Strategies for Nuclear Microreactor Systems. Nucl Technol 2023;209:S21–40. https://doi.org/10.1080/00295450.2022.2055701.
  • [157] Sardar MAI, Rahman M, Rubini P. Enhancing Thermal–Hydraulic Performance in Nuclear Reactor Subchannels with Al2O3 Nanofluids: A CFD Analysis. Energies 2024;17:5486. https://doi.org/10.3390/en17215486.
  • [158] Sharma D, Pandey KM, Debbarma A, Choubey G. Numerical Investigation of heat transfer enhancement of SiO 2 -water based nanofluids in Light water nuclear reactor. Mater Today Proc 2017;4:10118–22. https://doi.org/10.1016/j.matpr.2017.06.332.
  • [159] Hamad EM, Khaffaf A, Yasin O, Abu El-Rub Z, Al-Gharabli S, Al-Kouz W, et al. Review of Nanofluids and Their Biomedical Applications. J Nanofluids 2021;10:463–77. https://doi.org/10.1166/jon.2021.1806.
  • [160] Wang C, Xiu Y, Zhang Y, Wang Y, Xu J, Yu W, et al. Recent advances in biotin-based therapeutic agents for cancer therapy. Nanoscale 2025;17:1812–73. https://doi.org/10.1039/D4NR03729D.
  • [161] Szwed M, Marczak A. Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment—The Current State of Knowledge. Cancers (Basel) 2024;16:1156. https://doi.org/10.3390/cancers16061156.
  • [162] Tang Y, Jin T, Flesch RCC. Effect of mass transfer and diffusion of nanofluid on the thermal ablation of malignant cells during magnetic hyperthermia. Appl Math Model 2020;83:122–35. https://doi.org/10.1016/j.apm.2020.02.010.
  • [163] Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance. Sci Prog 2024;107. https://doi.org/10.1177/00368504241228076.
  • [164] Firouzfar E, Soltanieh M, Noie SH, Saidi SH. Energy saving in HVAC systems using nanofluid. Appl Therm Eng 2011;31:1543–5. https://doi.org/10.1016/j.applthermaleng.2011.01.029.
  • [165] Jeanne N. A. Nanoparticles in Medical Imaging: Enhancing Contrast Agents. Res Invent J Sci Exp Sci 2024;4:31–6. https://doi.org/10.59298/RIJSES/2024/433136.
  • [166] Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem 2016;60:1–8. https://doi.org/10.1042/EBC20150001.
  • [167] Kulkarni MB, Ayachit NH, Aminabhavi TM. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022;12. https://doi.org/10.3390/bios12070543.
  • [168] Testa G, Persichetti G, Bernini R. Optofluidic biosensing: Devices, strategies, and applications. TrAC Trends Anal Chem 2024;178:117865. https://doi.org/10.1016/j.trac.2024.117865.
  • [169] Siavashy S, Soltani M, Rahimi S, Hosseinali M, Guilandokht Z, Raahemifar K. Recent advancements in microfluidic-based biosensors for detection of genes and proteins: Applications and techniques. Biosens Bioelectron X 2024;19:100489. https://doi.org/10.1016/j.biosx.2024.100489.
  • [170] Farooq U, Liu T, Jan A. Boundary Layer Analysis of Second-Order Magnetic Nanofluid Flow with Carbon Nanotubes and Gyrotactic Microorganisms for Medical Diagnostics. Bionanoscience 2025;15:113. https://doi.org/10.1007/s12668-024-01763-9.
  • [171] Mohite DD, Goyal A, Singh AS, Ansari MI, Patil KA, Yadav PD, et al. Improvement of thermal performance through nanofluids in industrial applications: A review on technical aspects. Mater Today Proc 2024. https://doi.org/10.1016/j.matpr.2024.04.083.
  • [172] Ponticorvo E, Iuliano M, Cirillo C, Maiorino A, Aprea C, Sarno M. Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid. Energies 2022;15:3059. https://doi.org/10.3390/en15093059.
  • [173] Bocanegra JA, Marchitto A, Misale M. Nanofluids in solar collectors: a comprehensive review focused on its sedimentation. Clean Technol Environ Policy 2024. https://doi.org/10.1007/s10098-024-02964-2.
  • [174] Christensen G, Younes H, Hong H, Smith P. Effects of solvent hydrogen bonding, viscosity, and polarity on the dispersion and alignment of nanofluids containing Fe2O3 nanoparticles. J Appl Phys 2015;118. https://doi.org/10.1063/1.4936171.
  • [175] Grzesik W. Nanofluid Assistance in Machining Processes- Properties, Mechanisms and Applications: a Review. J Mach Eng 2021:75–90. https://doi.org/10.36897/jme/133477.
  • [176] Li M, Yu T, Zhang R, Yang L, Li H, Wang W. MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid. Int J Adv Manuf Technol 2018;99:1735–53. https://doi.org/10.1007/s00170-018-2576-7.
  • [177] Hegab H, Kishawy HA, Umer U, Mohany A. A model for machining with nano-additives based minimum quantity lubrication. Int J Adv Manuf Technol 2019;102:2013–28. https://doi.org/10.1007/s00170-019-03294-0.
  • [178] Gupta MK, Jamil M, Wang X, Song Q, Liu Z, Mia M, et al. Performance Evaluation of Vegetable Oil-Based Nano-Cutting Fluids in Environmentally Friendly Machining of Inconel-800 Alloy. Materials (Basel) 2019;12:2792. https://doi.org/10.3390/ma12172792.
  • [179] Singh B, Sood S. Hybrid nanofluids preparation, thermo-physical properties, and applications: A Review. Hybrid Adv 2024;6:100192. https://doi.org/10.1016/j.hybadv.2024.100192.
  • [180] Ouabouch O, Kriraa M, Lamsaadi M. Stability, thermophsical properties of nanofluids, and applications in solar collectors: A review. AIMS Mater Sci 2021;8:659–84. https://doi.org/10.3934/matersci.2021040.
  • [181] Hwang Y, Lee J-K, Lee J-K, Jeong Y-M, Cheong S, Ahn Y-C, et al. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 2008;186:145–53. https://doi.org/10.1016/j.powtec.2007.11.020.
  • [182] Franco CA, Giraldo LJ, Candela CH, Bernal KM, Villamil F, Montes D, et al. Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant–Nanoparticle–Brine Interaction: From Laboratory Experiments to Oil Field Application. Nanomaterials 2020;10:1579. https://doi.org/10.3390/nano10081579.
  • [183] Bao Z, Bing N, Zhu X, Xie H, Yu W. Ti3C2Tx MXene contained nanofluids with high thermal conductivity, super colloidal stability and low viscosity. Chem Eng J 2021;406:126390. https://doi.org/10.1016/j.cej.2020.126390.
  • [184] Kilikevičius S, Kvietkaitė S, Mishnaevsky L, Omastová M, Aniskevich A, Zeleniakienė D. Novel Hybrid Polymer Composites with Graphene and MXene Nano-Reinforcements: Computational Analysis. Polymers (Basel) 2021;13:1013. https://doi.org/10.3390/polym13071013.
  • [185] Shaik AH, Shaik S, Goyal S, Chandan MR, Veza I, Buradi A, et al. A Review on Environmental and Economic Impact of 2D Nanomaterials‐Based Heat Transfer Fluids. J Nanomater 2022;2022. https://doi.org/10.1155/2022/3443360.
  • [186] Reddy GS, Sumalatha V. Nanofluids: Bridging nanotechnology and fluid dynamics for enhanced thermal performance. J Phys Conf Ser 2024;2837:012053. https://doi.org/10.1088/1742-6596/2837/1/012053.
  • [187] Said Z, Bellos E, Muhammad Ali H, Rahman S, Tzivanidis C. Nanofluids, turbulators, and novel working fluids for heat transfer processes and energy applications: Current status and prospective. Appl Therm Eng 2025;258:124478. https://doi.org/10.1016/j.applthermaleng.2024.124478.
  • [188] Adil A, Farrukh A, Hassan F, Jamil F, Khiadani M, Saeed S, et al. Magnetic nanofluids preparation and its thermal applications: a recent review. J Therm Anal Calorim 2024;149:9001–33. https://doi.org/10.1007/s10973-024-13348-5.
  • [189] Arslan O, Ozgur MA, Yildizay HD, Kose R. Fuel Effects on Optimum Insulation Thickness: An Exergitic Approach. Energy Sources, Part A Recover Util Environ Eff 2009;32:128–47. https://doi.org/10.1080/15567030903196327.
  • [190] Eze AH, Lakatos Á. Applications of thermal insulation materials by aircraft. J Phys Conf Ser 2023;2628:012018. https://doi.org/10.1088/1742-6596/2628/1/012018.
  • [191] Ali N, Bahman AM, Aljuwayhel NF, Ebrahim SA, Mukherjee S, Alsayegh A. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials 2021;11:1628. https://doi.org/10.3390/nano11061628.
There are 190 citations in total.

Details

Primary Language English
Subjects Microfluidics and Nanofluidics
Journal Section Review
Authors

Hasan D. Yıldızay 0000-0002-2449-8056

Muhammed Bekmezci 0000-0003-3965-6333

Fatih Şen 0000-0001-6843-9026

Publication Date March 25, 2025
Submission Date February 5, 2025
Acceptance Date March 13, 2025
Published in Issue Year 2025 Issue: 060

Cite

IEEE H. D. Yıldızay, M. Bekmezci, and F. Şen, “Nanofluids and engineering applications: A review”, JSR-A, no. 060, pp. 126–149, March 2025, doi: 10.59313/jsr-a.1634164.