Research Article
BibTex RIS Cite

Crustal melting during exhumation of the Menderes Core Complex: Insights from the mineral chemistry of the Güneşli granite (Western Türkiye)

Year 2025, Issue: 062, 40 - 60, 30.09.2025
https://doi.org/10.59313/jsr-a.1641385

Abstract

The Güneşli Granite, located in the Gördes Submassif within the northern part of the Menderes Massif, represents one of the Early Miocene intrusions in the region. This high-K calc-alkaline, slightly peraluminous two-mica granite comprises two compositional members: granite and granodiorite, with some exhibiting adakitic signatures. This study investigates the intrusion's plagioclase, biotite, and muscovite chemistry. Plagioclases in the Güneşli granite predominantly consist of oligoclase, while the granodiorite exhibits anorthite contents ranging from An14 to An30, indicating oligoclase and occasionally andesine compositions. Black micas are classified as biotite, characterized by high Fe numbers and convergence toward annite composition due to low AlIV content. White micas are classified as muscovite based on their low Si and ferromagnesian content. Both mica types are of magmatic origin and show no evidence of post-magmatic alteration. Measured minerals are generally similar in adakitic and non-adakitic samples; however, adakitic rocks exhibit higher OH- compositions. The source rocks are predominantly crustal and closely resemble the peraluminous biotites found in S-type granites. The intrusion's oxygen fugacity (fO2), determined from biotite chemistry, indicates a slightly oxidizing state at FMQ+0.1 to +0.8 buffer. Thermobarometric calculations based on machine learning applied to biotite chemistry suggest that the magma crystallized at depths between 5.8 and 10.5 kbar, deeper than previously expected, with temperatures ranging from 723 to 779 °C. The integration of regional geology, field studies, and mineral chemistry indicates that the Güneşli granites originated from deep-crustal sections and were emplaced at mid-crustal depths within the Menderes Massif. These crustal-derived granites evolved through assimilation-fractional crystallization, indicating a crustal reworking during the development of the Gördes Dome in the Early Miocene.

Project Number

Istanbul Technical University (Scientific Research Projects - BAP - 43563)

References

  • [1] Jolivet, L., & Faccenna, C., 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics, 19(6), 1095-1106. https://doi.org/10.1029/2000TC900018
  • [2] Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., & Driussi, O., 2013. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1-33.
  • [3] Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C. W., & Güngör, T., 2001. An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology, 29(7), 611-614.
  • [4] Işık, V., Seyitoğlu, G., & Çemen, İ., 2003. Ductile–brittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes massif, western Turkey. Tectonophysics, 374(1), 1-18. https://doi.org/10.1016/S0040-1951(03)00275-0
  • [5] Çemen, I., Catlos, E. J., Göğüş, O., & Özerdem, C., 2006. Postcollisional extensional tectonics and exhumation of the Menderes massif in the Western Anatolia extended terrane, Turkey. In: Dilek, Y., Pavlides, S. (Eds.), Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America, pp. 279-312.
  • [6] Dilek, Y., Altunkaynak, Ş., Öner, Z., 2009. Syn-extensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. In: Ring, U., et al. (Eds.), Extensional Tectonics of the Western Mediterranean Region. Geological Society, London, Special Publications, 321, 197-223. https://doi.org/10.1144/SP321.10
  • [7] Catlos, E. J., Baker, C., Sorensen, S. S., Çemen, I., & Hançer, M., 2010. Geochemistry, geochronology, and cathodoluminescence imagery of the Salihli and Turgutlu granites (central Menderes Massif, western Turkey): Implications for Aegean tectonics. Tectonophysics, 488(1-4), 110-130.
  • [8] Catlos, E., Jacob, L., Oyman, T., & Sorensen, S., 2012. Long-term exhumation of an Aegean metamorphic core complex granitoids in the Northern Menderes Massif, western Turkey. American Journal of Science, 312(5), 534-571.
  • [9] Hasözbek, A., Akay, E., Erdoğan, B., Satır, M., & Siebel, W., 2010. Early Miocene granite formation by detachment tectonics or not? A case study from the northern Menderes Massif (Western Turkey). Journal of Geodynamics, 50(2), 67-80.
  • [10] Öner, Z., & Dilek, Y., 2011. Supradetachment basin evolution during continental extension: The Aegean province of Western Anatolia, Turkey. Geological Society of America Bulletin.
  • [11] Erkül, S. T., & Erkül, F., 2012. Magma interaction processes in syn-extensional granitoids: The Tertiary Menderes Metamorphic Core Complex, western Turkey. Lithos, 142-143, 16-33. https://doi.org/10.1016/j.lithos.2012.02.008
  • [12] Altunkaynak, Ş., Dilek, Y., Genç, C.Ş., Sunal, G., Gertisser, R., Furnes, H., Foland, K.A., Yang, J., 2012a. Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Research, 21, 961–986. https://doi.org/10.1016/j.gr.2011.10.010
  • [13] Erkül, F., Erkül, S. T., Manap, H. S., & Çolak, C., 2017. An extensional and transtensional origin of elongated magmatic domes and localised transfer faults in the northern Menderes metamorphic core complex, western Turkey. Geodinamica Acta, 29(1), 139-159.
  • [14] Okay, A. I., & Satir, M., 2000. Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137(5), 495-516. https://doi.org/10.1017/S0016756800004532
  • [15] Genç, Ş. C., & Altunkaynak, Ş., 2007. Eybek graniti (Biga yarımadası, KB Anadolu) üzerine: Yeni jeokimya verileri ışığında yeni bir değerlendirme. Yerbilimleri, 28(2), 75-98.
  • [16] Okay, A. I., Satir, M., Zattin, M., Cavazza, W., & Topuz, G., 2008. An Oligocene ductile strike-slip shear zone: The Uludağ Massif, northwest Turkey—Implications for the westward translation of Anatolia. Geological Society of America Bulletin, 120(7-8), 893-911.
  • [17] Black, K. N., Catlos, E. J., Oyman, T., & Demirbilek, M., 2013. Timing Aegean extension: evidence from in situ U–Pb geochronology and cathodoluminescence imaging of granitoids from NW Turkey. Lithos, 180, 92-108.
  • [18] Kamacı, Ö., & Altunkaynak, Ş., 2019a. Cooling and deformation history of the Çataldağ Metamorphic Core Complex (NW Turkey). Journal of Asian Earth Sciences, 172, 279-291. https://doi.org/10.1016/j.jseaes.2018.09.012
  • [19] Altunkaynak, Ş., Ünal, A., Sunal, G., Kamacı, Ö., Dunkl, I., 2021. Miocene uplift and exhumation history of northwestern Anatolia (Turkey): Implications from apatite (U-Th)/He thermochronology of syn-extensional plutons. Journal of Asian Earth Sciences, 213, 104770.
  • [20] Şengör, A. M. C., & Yılmaz, Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4), 181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  • [21] Okay, A. I., & Tüysüz, O., 1999. Tethyan sutures of northern Turkey. In: Durand, B., et al. (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen. Geological Society, London, Special Publications, 156, 475-515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • [22] Şengör, A. M. C., Lom, N., Sunal, G., Zabcı, C., & Sancar, T., 2019. The phanerozoic palaeotectonics of Turkey. Part I: an inventory. Mediterranean Geoscience Reviews, 1, 91-161.
  • [23] Genç, S., & Yilmaz, Y. (1997). An example of post-collisional magmatism in northwestern Anatolia: the Kızderbent volcanics (Armutlu peninsula, Turkey). Turkish Journal of Earth Sciences, 6(1), 33-42.
  • [24] Okay, A. I., & Satir, M., 2006. Geochronology of Eocene plutonism and metamorphism in northwest Turkey. Geodinamica Acta, 19(5), 251-266.
  • [25] Karacık, Z., Yılmaz, Y., Pearce, J. A., & Ece, Ö. I., 2008. Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey. International Journal of Earth Sciences, 97(6), 1181-1200.
  • [26] Ustaömer, P. A., Ustaömer, T., Collins, A. S., & Reischpeitsch, J., 2009. Lutetian arc-type magmatism along the southern Eurasian margin: new U-Pb LA-ICPMS and whole-rock geochemical data from Marmara Island, NW Turkey. Mineralogy and Petrology, 96(1-2), 177-196.
  • [27] Gülmez, F., Genç, Ş. C., Keskin, M., & Tüysüz, O., 2013. A post-collision slab-breakoff model for the origin of the Middle Eocene magmatic rocks of the Armutlu–Almacık belt, NW Turkey and its regional implications. Geological Society, London, Special Publications, 372(1), 107-139.
  • [28] Altunkaynak, Ş., Sunal, G., Aldanmaz, E., Genç, C.Ş., Dilek, Y., Furnes, H., Foland, K.A., Yang, J., Yıldız, M., 2012b. Eocene Granitic Magmatism in NW Anatolia (Turkey) revisited: New implications from comparative zircon SHRIMP U–Pb and 40Ar–39Ar geochronology and isotope geochemistry on magma genesis and emplacement. Lithos, 155, 289–309. https://doi.org/10.1016/j.lithos.2012.09.008
  • [29] Güraslan, I. N., & Altunkaynak, Ş., 2019. Role of mantle and lower continental crust in the genesis of Eocene post-collisional granitoids: Insights from the Topuk pluton (NW Turkey). Journal of Asian Earth Sciences, 179, 365-384. https://doi.org/10.1016/j.jseaes.2019.05.012
  • [30] Özyurt, M., & Altunkaynak, Ş., 2020. Origin of Eocene adakitic magmatism in northwest Turkey. Journal of Asian Earth Sciences, 190, 104147.
  • [31] Ersoy, E. Y., Akal, C., Palmer, M. R., & Mertz-Kraus, R., 2023. U-Pb dating of arc to post-collisional magmatic events in northwestern Anatolia: The Eocene Granitoids in NW Anatolia revisited. Journal of Asian Earth Sciences: X, 9, 100148.
  • [32] Kocatürk, H., Kumral, M., Creaser, R. A., DuFrane, S. A., Ünlüer, A. T., Sendir, H., Abdelnasser, A., 2024. Magma nature and tectono-magmatic context of the Eocene Uludağ granitoids (NW-Türkiye): Insights into the Cenozoic geodynamics of the Tethyan Orogenic Belt. Geochemistry, 126170.
  • [33] Arık, T., Ünal, A., Altunkaynak, Ş. (2025). An Eocene transtensional shear zone driven by the strain localization along slab break-off: Implications from the sheared syn-kinematic northern Kapıdağ Pluton (NW Anatolia, Turkey). Journal of Asian Earth Sciences, 279, 106444. https://doi.org/10.1016/j.jseaes.2024.106444
  • [34] Topuz, G., & Okay, A. I., 2017. Late Eocene–Early Oligocene two-mica granites in NW Turkey (the Uludağ Massif): Water-fluxed melting products of a mafic metagreywacke. Lithos, 268-271, 334-350. https://doi.org/10.1016/j.lithos.2016.11.010
  • [35] Kamacı, Ö., & Altunkaynak, Ş., 2020. The role of accreted continental crust in the formation of granites within the Alpine style continental collision zone: Geochemical and geochronological constrains from leucogranites in the Çataldağ Metamorphic Core Complex (NW Turkey). Lithos, 354-355, 105347. https://doi.org/10.1016/j.lithos.2019.105347
  • [36] Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., & Mitchell, J. G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research.
  • [37] Altunkaynak, Ş., 2007. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey. The Journal of Geology, 115(1), 63-82.
  • [38] Altunkaynak, Ş., & Yilmaz, Y., 1998. The Mount Kozak magmatic complex, Western Anatolia. Journal of Volcanology and Geothermal Research.
  • [39] Genç, Ş. C., 1998. Evolution of the Bayramiç magmatic complex, northwestern Anatolia. Journal of volcanology and geothermal research, 85(1-4), 233-249.
  • [40] Karacık, Z., & Yılmaz, Y., 1998. Geology of the ignimbrites and the associated volcano–plutonic complex of the Ezine area, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85(1-4), 251-264.
  • [41] Aysal, N., 2015. Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo–Miocene granitoids in the Biga Peninsula, Northwest Turkey. Journal of Asian Earth Sciences, 105, 68-84.
  • [42] Kamacı, Ö., & Altunkaynak, Ş., 2019b. Magma chamber processes and dynamics beneath northwestern Anatolia: Insights from mineral chemistry and crystal size distributions (CSDs) of the Kepsut volcanic complex (NW Turkey). Journal of Asian Earth Sciences, 181, 103889. https://doi.org/10.1016/j.jseaes.2019.103889
  • [43] Kamacı, Ö., & Altunkaynak, Ş., 2024. Petrological insights into connections between the S-and I-type magmatic associations in metamorphic core complexes: A case study of the Çataldağ metamorphic core complex (NW Turkey). Lithos, 464, 107433.
  • [44] Ünal, A., & Altunkaynak, Ş., 2018. Nature and genesis of potassic high Ba-Sr granitoids associated with syn-convergent extension in NW Turkey. Lithos, 316, 261-277.
  • [45] Ünal, A., Altunkaynak, Ş., 2019. Interplay between volcanic and plutonic systems: A case study of the early Miocene Solarya Volcano-plutonic Complex in NW Anatolia (Turkey). Journal of Asian Earth Sciences, 179, 319–336. https://doi.org/10.1016/j.jseaes.2019.03.013.
  • [46] Ünal, A., Altunkaynak, Ş., Kamacı, Ö., Dunkl, I., & Benowitz, J. A., 2019. The emplacement history of granitic intrusions into the upper crust: Forceful to passive emplacement of the early Miocene Solarya Pluton (NW Turkey) as a case study. Journal of Asian Earth Sciences, 183, 103979. https://doi.org/10.1016/j.jseaes.2019.103979
  • [47] Yücel-Öztürk, Y., Akal, C., Ersoy, E. Y., Sevim, S., & Mertz-Kraus, R., 2023. Geochronology and geochemistry of the Miocene Kadıkalesi monzonite (Bodrum Peninsula, western Anatolia): Implications for its relation with the South Aegean Volcanic Arc. Geochemistry, 83(3), 125982.
  • [48] Doner, Z., Unluer, A.T., Özdamar, Ş., Sarıkaya, O., Roden, M.F., Kaya, M., Kocaturk, H., Kumral, M., Esenli, F. (2024). The origin of alkali granites and Th-U±REE enrichments in Kestanbol Magmatic Complex (NW Anatolia) revisited: Evidences from bulk-rock geochemistry and isotopic data, zircon U-Pb, biotite Ar/Ar and apatite (U-Th)/He geochronology. Lithos, 484, 107751. https://doi.org/10.1016/j.lithos.2024.107751
  • [49] Özdamar, Ş., Zou, H., Billor, M. Z., Hames, W., Roden, M. F., Sarıkaya, O., Georgiev, S., 2024. Petrogenesis, geochronology and thermochronology of Oligocene to Miocene Western Anatolia granitoid plutons in Turkey. Lithos, 464, 107430.
  • [50] Ünluer, A.T., Doner, Z., Ünal, A., Kamaci, O., Kaya, M., Ozturk, S., Kumral, M. (2024). The first finding of a highly evolved Mg-rich carbonatite intrusion in NW Anatolia (Arıklı-Çanakkale). Geochemistry, 84(4), 126124. https://doi.org/10.1016/j.chemer.2024.126124
  • [51] Kamacı, inpress
  • [52] Bozkurt, E., & Park, R. G., 1994. Southern Menderes Massif: an incipient metamorphic core complex in western Anatolia, Turkey. Journal of the Geological Society, 151(3), 545-554.
  • [53] Işık, V., Tekeli, O., Seyitoğlu, G., 2004. The 40Ar/39Ar age of extensional ductile deformation and granitoid intrusion in the northern Menderes core complex: implications for the initiation of extensional tectonics in western Turkey. Journal of Asian Earth Sciences, 23(4), 555-566.
  • [54] Akdeniz, N., & Konak, N., 1979. Menderes Masifinin Simav dolayındaki kaya birimleri ve metabazik, meta ultramafik kayaların konumu. Türk Jeoloji Kurumu Bülteni, 22(2), 175-183.
  • [55] Loos, S., & Reischmann, T., 1999. The evolution of the southern Menderes Massif in SW Turkey as revealed by zircon dating. Journal of the Geological Society, 156(5), 1021-1030.
  • [56] Candan, O., Dora, O., Oberhänsli, R., Çetinkaplan, M., Partzsch, J., Warkus, F., & Dürr, S., 2001. Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. International Journal of Earth Sciences, 89, 793-811.
  • [57] Bozkurt, E., & Oberhänsli, R., 2001. Menderes Massif (western Turkey): structural, metamorphic and magmatic evolution–a synthesis. International Journal of Earth Sciences, 89(4), 679-708.
  • [58] Rimmelé, G., Oberhänsli, R., Goffé, B., Jolivet, L., Candan, O., & Çetinkaplan, M., 2003. First evidence of high-pressure metamorphism in the “Cover Series” of the southern Menderes Massif. Tectonic and metamorphic implications for the evolution of SW Turkey. Lithos, 71(1-2), 19-46.
  • [59] Gülmez, F., Damcı, E., Ülgen, U.B., Okay, A., 2019. Deep structure of Central Menderes Massif: Data from deep geothermal wells. Turkish Journal of Earth Sciences, 28(4), Article 3. https://doi.org/10.3906/yer-1903-16.
  • [60] Şengör, A. M. C., Satir, M., & Akkök, R., 1984. Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for Pan‐African basement in Turkey. Tectonics, 3(7), 693-707.
  • [61] Özer, S., Sözbilir, H., Özkar, İ., Toker, V., & Sari, B., 2001. Stratigraphy of Upper Cretaceous–Palaeogene sequences in the southern and eastern Menderes Massif (western Turkey). International Journal of Earth Sciences, 89(5), 852-866.
  • [62] Candan, O., Çetinkaplan, M., Oberhänsli, R., Rimmelé, G., & Akal, C., 2005. Alpine high-P/low-T metamorphism of the Afyon Zone and implications for the metamorphic evolution of Western Anatolia, Turkey. Lithos, 84(1-2), 102-124.
  • [63] Bozkurt, E., & Satir, M., 2000. The southern Menderes Massif (western Turkey): geochronology and exhumation history. Geological Journal, 35(3‐4), 285-296.
  • [64] Ring, U., & Collins, A. S., 2005. U-Pb SIMS dating of synkinematic granites: Timing of core-complex formation in the northern Anatolide belt of western Turkey. Journal of the Geological Society, 162(4), 523-531.
  • [65] Thomson, S. N., & Ring, U., 2006. Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics, 25(3).
  • [66] Catlos, E. J., & Cemen, I., 2005. Monazite ages and the evolution of the Menderes Massif, western Turkey. International Journal of Earth Sciences, 94, 204-217.
  • [67] Erkül, F., 2010. Tectonic significance of synextensional ductile shear zones within the Early Miocene Alaçamdağ granites, northwestern Turkey. Geological Magazine, 147(4), 611-637.
  • [68] Seyitoğlu, G., & Işık, V., 2015. Late Cenozoic extensional tectonics in western Anatolia: Exhumation of the Menderes core complex and formation of related basins. Bulletin of the Mineral Research and Exploration, 151(151), 47-106.
  • [69] Cenki-Tok, B., Expert, M., Işık, V., et al., 2016. Complete Alpine reworking of the northern Menderes Massif, western Turkey. International Journal of Earth Sciences, 105, 1507-1524.
  • [70] Etzel, T. M., Catlos, E. J., Cemen, I., Ozerdem, C., Oyman, T., & Miggins, D., 2020. Documenting exhumation in the Central and Northern Menderes Massif (Western Turkey): New insights from garnet-based PT estimates and K-feldspar 40Ar/39Ar geochronology. Lithosphere, 2020(1), 8818289.
  • [71] Özgenc, I., & Ilbeyli, N., 2008. Petrogenesis of the Late Cenozoic Egrigöz pluton in western Anatolia, Turkey: implications for magma genesis and crustal processes. International Geology Review, 50(4), 375-391.
  • [72] Öner, Z., Dilek, Y., & Kadioglu, Y. K., 2010. Geology and geochemistry of the synextensional Salihli granitoid in the Menderes core complex, western Anatolia, Turkey. International Geology Review, 52(2-3), 336-368.
  • [73] Erkül, F., Tatar Erkül, S., Manap, H. S., & Çolak, C., 2017. An extensional and transtensional origin of elongated magmatic domes and localised transfer faults in the northern Menderes metamorphic core complex, western Turkey. Geodinamica acta, 29(1), 139-159.
  • [74] Ayan, M., 1973. Migmatites in the Gördes area. Bulletin of the Mineral Research and Exploration, 81, 6.
  • [75] Buğdaycıoğlu, Ç., 2004. Tectono-metamorphic evolution of the northern Menderes Massif: evidence from the horst between Gördes and Demirci Basins (West Anatolia, Turkey). MSc Thesis, Middle East Technical University.
  • [76] Bozkurt, E., Satır, M., & Buğdaycıoğlu, Ç., 2010. Timing of post-orogenic extension in the Gördes migmatite dome, Western Turkey: insights from U–Pb and Rb-Sr chronology. In: Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia, Ankara, Turkey.
  • [77] Kuşcu, R., 2010. Güneşli granitoyidinin (Gördes/Manisa) petroloji ve jeolojisi. MSc Thesis, Ankara Universitesi, Turkey.
  • [78] Delaloye, M., & Bingol, E., 2000. Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. International Geology Review, 42, 241-268.
  • [79] Dağ and Asutay, 1994. The petrological properties of Güneşli granite located in gördes migmatites, 47. Türkiye Jeoloji Kurultayi Bildiri Özleri, 137.
  • [80] Nachit, H., Ibhi, A., & Ohoud, M. B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus. Géoscience, 337(16), 1415-1420.
  • [81] Tischendorf, G., Rieder, M., Förster, H. J., Gottesmann, B., & Guidotti, C. V., 2004. A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68(4), 649-667.
  • [82] Miller, C. F., Stoddard, E. F., Bradfish, L. J., & Dollase, W. A., 1981. Composition of plutonic muscovite: genetic implications. Canadian Mineralogist, 19(1), 25-34.
  • [83] Henry, D. J., Guidotti, C. V., & Thomson, J. A., 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American mineralogist, 90(2-3), 316-328.
  • [84] Li, X., & Zhang, C., 2022. Machine learning thermobarometry for biotite-bearing magmas. Journal of Geophysical Research: Solid Earth, 127, e2022JB024137. https://doi.org/10.1029/2022JB024137
  • [85] Anderson, J. L., & Smith, D. R. (1995). The effects of temperature and f O2 on the Al-in-hornblende barometer. American mineralogist, 80(5-6), 549-559.
  • [86] Abdel-Rahman, A. F. M., 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of petrology, 35(2), 525-541.
  • [87] Gao, P., Zhao, Z. F., & Zheng, Y. F., 2016. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China. Journal of Asian Earth Sciences, 123, 142-161.
  • [88] Zhou, Z. X., 1986. The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrologica Sinica, 2(2), 59-70.
  • [89] Li, X., Zhang, C., Behrens, H., & Holtz, F., 2020. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos, 356, 105371.
There are 89 citations in total.

Details

Primary Language English
Subjects Igneous and Metamorphic Petrology
Journal Section Research Articles
Authors

Ömer Kamacı 0000-0002-6893-2985

Project Number Istanbul Technical University (Scientific Research Projects - BAP - 43563)
Publication Date September 30, 2025
Submission Date February 17, 2025
Acceptance Date August 1, 2025
Published in Issue Year 2025 Issue: 062

Cite

IEEE Ö. Kamacı, “Crustal melting during exhumation of the Menderes Core Complex: Insights from the mineral chemistry of the Güneşli granite (Western Türkiye)”, JSR-A, no. 062, pp. 40–60, September2025, doi: 10.59313/jsr-a.1641385.