Review
BibTex RIS Cite

Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine

Year 2025, Issue: 014, 24 - 40, 30.12.2025

Abstract

Copper nanoparticles (CuNPs) have emerged as versatile nanomaterials with significant biomedical potential owing to their unique optical, electrical, thermal, and catalytic properties. As an essential trace element, copper plays a pivotal role in various physiological processes, including metabolism, cardiovascular health, and tissue regeneration, making its nanoscale forms particularly relevant for medical applications. This review offers a thorough synthesis of existing research on CuNPs. Encompassing their preparation via chemical, physical, and biologically mediated (green) approaches, alongside detailed characterization techniques essential for correlating size, morphology, and surface chemistry with biological performance. Special emphasis is placed on their multifunctional roles in antimicrobial therapy, targeted drug delivery, cancer treatment, and imaging-guided diagnostics, as well as their integration into theranostic platforms. The toxicological profile of CuNPs, including their cellular interactions, generation of reactive oxygen species (ROS), and potential environmental impact, is critically discussed. Furthermore, the review outlines recent advances and future perspectives, highlighting the importance of precise synthesis control, advanced characterization, and rigorous safety evaluation to facilitate the safe and effective clinical translation of these technologies. This review aims to link synthesis strategies, physicochemical properties, and biomedical functionalities of CuNPs while identifying challenges and research priorities that can accelerate their translation from laboratory to clinical practice.

References

  • [1] L. Chen, J. Min, and F. Wang, “Copper homeostasis and cuproptosis in health and disease,” Signal Transduct. Target. Ther., vol. 7, no. 1, p. 378, 2022.
  • [2] X. Chen et al., “Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies,” Cell Death Dis., vol. 14, no. 2, p. 105, 2023.
  • [3] J. Sailer et al., “Deadly excess copper.” Redox Biol., vol. 75, p. 103256, Sep. 2024, doi: 10.1016/j.redox.2024.103256.
  • [4] M. Rondanelli et al., “Copper as dietary supplement for bone metabolism: a review,” Nutrients, vol. 13, no. 7, p. 2246, 2021.
  • [5] R. Liu, J. Yao, K. Chen, and W. Peng, “Association between biomarkers of zinc and copper status and heart failure: a meta-analysis.” ESC Hear. Fail., vol. 11, no. 5, pp. 2546–2556, Oct. 2024, doi: 10.1002/ehf2.14837.
  • [6] J. Naradala, A. Allam, V. R. Tumu, and R. K. Rajaboina, “Antibacterial activity of copper nanoparticles synthesized by Bambusa arundinacea leaves extract,” Biointerface Res. Appl. Chem, vol. 12, pp. 1230–1236, 2021.
  • [7] G. M. El-Sherbiny, M. E. Shehata, and M. H. Kalaba, “Biogenic copper and copper oxide nanoparticles to combat multidrug-resistant Staphylococcus aureus: Green synthesis, mechanisms, resistance, and future perspectives,” Biotechnol. Reports, vol. 46, p. e00896, 2025, doi: https://doi.org/10.1016/j.btre.2025.e00896.
  • [8] S. V. Gudkov, D. E. Burmistrov, P. A. Fomina, S. Z. Validov, and V. A. Kozlov, “Antibacterial properties of copper oxide nanoparticles,” Int. J. Mol. Sci., vol. 25, no. 21, p. 11563, 2024.
  • [9] S. Talebian, B. Shahnavaz, M. Nejabat, Y. Abolhassani, and F. B. Rassouli, “Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials,” Front. Bioeng. Biotechnol., vol. 11, p. 1140010, 2023.
  • [10] V. Molahalli et al., “Properties, synthesis, and characterization of Cu-based nanomaterials,” in Copper-based nanomaterials in organic transformations, ACS Publications, 2024, pp. 1–33.
  • [11] A. Pricop et al., “Copper Nanoparticles Synthesized by Chemical Reduction with Medical Applications,” Int. J. Mol. Sci., vol. 26, no. 4, p. 1628, 2025.
  • [12] D. M. Nzilu, E. S. Madivoli, D. S. Makhanu, S. I. Wanakai, G. K. Kiprono, and P. G. Kareru, “Green synthesis of copper oxide nanoparticles and their efficiency in the degradation of rifampicin antibiotic,” Sci. Rep., vol. 13, no. 1, p. 14030, 2023.
  • [13] Q. Wei, Y. Pan, Z. Zhang, S. Yan, and Z. Li, “Copper-based nanomaterials for biomedical applications,” Chem. Eng. J., vol. 483, p. 149040, 2024, doi: https://doi.org/10.1016/j.cej.2024.149040.
  • [14] M. Devaraji, P. V Thanikachalam, and K. Elumalai, “The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review.” Biotechnol. Notes (Amsterdam, Netherlands), vol. 5, pp. 80–99, 2024, doi: 10.1016/j.biotno.2024.06.001.
  • [15] S. Adewale Akintelu, A. Kolawole Oyebamiji, S. Charles Olugbeko, and D. Felix Latona, “Green chemistry approach towards the synthesis of copper nanoparticles and their potential applications as therapeutic agents and environmental control,” Curr. Res. Green Sustain. Chem., vol. 4, p. 100176, 2021, doi: https://doi.org/10.1016/j.crgsc.2021.100176.
  • [16] A. I. Osman et al., “Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review,” Environ. Chem. Lett., vol. 22, no. 2, pp. 841–887, 2024, doi: 10.1007/s10311-023-01682-3.
  • [17] A. Antonio-Pérez, L. F. Durán-Armenta, M. G. Pérez-Loredo, and A. L. Torres-Huerta, “Biosynthesis of copper nanoparticles with medicinal plants extracts: From extraction methods to applications,” Micromachines, vol. 14, no. 10, p. 1882, 2023.
  • [18] A. G. Krishna, S. Sahana, H. Venkatesan, and V. Arul, “Green synthesis of copper nanoparticles: a promising solution for drug resistance and cancer therapy challenges,” J. Egypt. Natl. Canc. Inst., vol. 36, no. 1, p. 44, 2024.
  • [19] E. Dwivedi and L. K. Singh, “Comprehensive review on biological synthesis of copper nanoparticles and their multivariate applications,” Adv. Appl. Sci. Res, vol. 13, p. 99, 2022.
  • [20] N. C. Nkosi, A. K. Basson, Z. G. Ntombela, N. G. Dlamini, and R. V. S. R. Pullabhotla, “A review on bioflocculant-synthesized copper nanoparticles: characterization and application in wastewater treatment,” Bioengineering, vol. 11, no. 10, p. 1007, 2024.
  • [21] Y. T. Gebreslassie and F. G. Gebremeskel, “Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications,” Biotechnol. Reports, vol. 41, p. e00828, 2024, doi: https://doi.org/10.1016/j.btre.2024.e00828.
  • [22] A. Kumar, A. Saxena, A. De, R. Shankar, and S. Mozumdar, “Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions,” Rsc Adv., vol. 3, no. 15, pp. 5015–5021, 2013.
  • [23] A. Vinukonda, N. Bolledla, R. K. Jadi, R. Chinthala, and V. R. Devadasu, “Synthesis of nanoparticles using advanced techniques,” Next Nanotechnol., vol. 8, p. 100169, 2025, doi: https://doi.org/10.1016/j.nxnano.2025.100169.
  • [24] A. M. Abu-Dief, W. H. Alsaedi, and M. M. Zikry, “A collective study on the fabrication of nano-materials for water treatment,” J. Umm Al-Qura Univ. Appl. Sci., pp. 1–23, 2025.
  • [25] M. Priya et al., “Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract,” Sci. Rep., vol. 13, no. 1, p. 18838, 2023.
  • [26] P. Kashyap, P. Shirkot, R. Das, H. Pandey, and D. Singh, “Biosynthesis and characterization of copper nanoparticles from Stenotrophomonas maltophilia and its effect on plant pathogens and pesticide degradation,” J. Agric. Food Res., vol. 13, p. 100654, 2023, doi: https://doi.org/10.1016/j.jafr.2023.100654.
  • [27] D. Tank et al., “Recent advances in phyto-and microorganisms-mediated synthesis of copper nanoparticles and their emerging applications in healthcare, environment, agriculture and food industry,” Bioprocess Biosyst. Eng., pp. 1–34, 2025.
  • [28] V. V. Gande and S. Pushpavanam, “Continuous synthesis of copper nanoparticles using a polyol process in a milli-channel reactor,” J. Flow Chem., vol. 11, no. 3, pp. 661–674, 2021.
  • [29] A. P. Onivefu, A. Efunnuga, A. Efunnuga, M. Maliki, I. H. Ifijen, and S. O. Omorogbe, “Photoresist performance: an exploration of synthesis, surface modification techniques, properties tailoring, and challenges navigation in copper/copper oxide nanoparticle applications,” Biomed. Mater. Devices, vol. 3, no. 1, pp. 62–92, 2025.
  • [30] C. M. Luque-Jacobo et al., “Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications,” Molecules, vol. 28, no. 12, Jun. 2023, doi: 10.3390/molecules28124838.
  • [31] D. Okyere, R. H. Manso, X. Tong, and J. Chen, “Stability of polyethylene glycol-coated copper nanoparticles and their optical properties,” Coatings, vol. 12, no. 6, p. 776, 2022.
  • [32] A. Ates and C. Hardacre, “The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments,” J. Colloid Interface Sci., vol. 372, no. 1, pp. 130–140, 2012, doi: https://doi.org/10.1016/j.jcis.2012.01.017.
  • [33] R. Lu, W. Hao, L. Kong, K. Zhao, H. Bai, and Z. Liu, “A simple method for the synthesis of copper nanoparticles from metastable intermediates,” RSC Adv., vol. 13, no. 21, pp. 14361–14369, 2023.
  • [34] A. Conte et al., “Advanced morphological control over Cu nanowires through a design of experiments approach,” Mater. Adv., vol. 5, no. 22, pp. 8836–8846, 2024.
  • [35] M. B. Gawande et al., “Cu and Cu-based nanoparticles: synthesis and applications in catalysis,” Chem. Rev., vol. 116, no. 6, pp. 3722–3811, 2016.
  • [36] M. Baláž et al., “Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach,” Adv. Powder Technol., vol. 31, no. 2, pp. 782–791, 2020, doi: https://doi.org/10.1016/j.apt.2019.11.032.
  • [37] H. Förster, C. Wolfrum, and W. Peukert, “Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process,” J. Nanoparticle Res., vol. 14, no. 7, p. 926, 2012.
  • [38] A. Nyabadza et al., “A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage,” Adv. Colloid Interface Sci., vol. 321, p. 103010, 2023.
  • [39] C. Lo Pò et al., “Cu-based nanocatalyst by pulsed laser ablation in liquid for water splitting: Effect of the solvent,” J. Phys. Chem. Solids, vol. 193, p. 112162, 2024, doi: https://doi.org/10.1016/j.jpcs.2024.112162.
  • [40] T. Khamliche, S. Khamlich, M. K. Moodley, B. M. Mothudi, M. Henini, and M. Maaza, “Laser fabrication of Cu nanoparticles based nanofluid with enhanced thermal conductivity: Experimental and molecular dynamics studies,” J. Mol. Liq., vol. 323, p. 114975, 2021, doi: https://doi.org/10.1016/j.molliq.2020.114975.
  • [41] P. G. Bhavyasree and T. S. Xavier, “Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: Review,” Curr. Res. Green Sustain. Chem., vol. 5, p. 100249, 2022, doi: https://doi.org/10.1016/j.crgsc.2021.100249.
  • [42] V. Vatanpour, O. O. Teber, M. Mehrabi, and I. Koyuncu, “Polyvinyl alcohol-based separation membranes: a comprehensive review on fabrication techniques, applications and future prospective,” Mater. Today Chem., vol. 28, p. 101381, 2023, doi: https://doi.org/10.1016/j.mtchem.2023.101381.
  • [43] N. Chakraborty et al., “Green synthesis of copper/copper oxide nanoparticles and their applications: a review,” Green Chem. Lett. Rev., vol. 15, no. 1, pp. 187–215, 2022.
  • [44] N. S. Alsaiari et al., “Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives,” Molecules, vol. 28, no. 1, p. 463, 2023, doi: 10.3390/molecules28010463.
  • [45] T. T. Tran et al., “pH-Dependent Morphology of Copper (II) Oxide in Hydrothermal Process and Their Photoelectrochemical Application for Non-Enzymatic Glucose Biosensor,” Appl. Sci., vol. 14, no. 13, p. 5688, 2024.
  • [46] Y. Cui et al., “Denitrification performance and in-situ fermentation mechanism of the wastepaper-flora slow-release carbon source,” Bioresour. Technol., vol. 380, p. 129074, 2023, doi: https://doi.org/10.1016/j.biortech.2023.129074.
  • [47] V. D. Kannan et al., “Ecofriendly bio-synthesis and spectral characterization of copper nanoparticles using fruit extract of Pedalium murex L.: in vitro evaluation of antimicrobial, antioxidant and anticancer activities on human lung cancer A549 cell line,” Mater. Technol., vol. 39, no. 1, p. 2286818, 2024.
  • [48] S. J. Figueroa Ramírez, B. Escobar Morales, D. A. Pantoja Velueta, J. M. T. Sierra Grajeda, I. L. Alonso Lemus, and C. A. Aguilar Ucán, “Green Synthesis of Copper Nanoparticles Using Sargassum spp. for Electrochemical Reduction of CO(2).” ChemistryOpen, vol. 13, no. 5, p. e202300190, May 2024, doi: 10.1002/open.202300190.
  • [49] D. Kirubakaran, K. Selvam, M. Dhaneeshram, M. S. Shivakumar, M. Rajkumar, and A. Shanmugarathinam, “Biogenic synthesis of copper nanoparticle using Impatiens chinensis L: insights into antimicrobial, antioxidant and anticancer activity,” J. Mol. Struct., vol. 1317, p. 138991, 2024, doi: https://doi.org/10.1016/j.molstruc.2024.138991.
  • [50] A. S. Pozdnyakov et al., “Green synthesis of stable nanocomposites containing copper nanoparticles incorporated in poly-N-vinylimidazole,” Polymers (Basel)., vol. 13, no. 19, p. 3212, 2021.
  • [51] J. Neiva, Z. Benzarti, S. Carvalho, and S. Devesa, “Green Synthesis of CuO Nanoparticles-Structural, Morphological, and Dielectric Characterization.,” Mater. (Basel, Switzerland), vol. 17, no. 23, Nov. 2024, doi: 10.3390/ma17235709.
  • [52] S. Tyagi, A. Kumar, P. K. Tyagi, and M. Hatami, “Development and characterization of biogenic copper oxide nanoparticles, with an exploration of their antibacterial and antioxidant potential.,” 3 Biotech, vol. 14, no. 1, p. 20, Jan. 2024, doi: 10.1007/s13205-023-03869-5.
  • [53] M. Piergiovanni et al., “The Combined ICP-MS, ESEM-EDX, and HAADF-STEM-EDX Approach for the Assessment of Metal Sub-Micro- and Nanoparticles in Wheat Grain.,” Molecules, vol. 29, no. 13, Jul. 2024, doi: 10.3390/molecules29133148.
  • [54] S. Vijayaram et al., “Applications of Green Synthesized Metal Nanoparticles — a Review,” Biol. Trace Elem. Res., vol. 202, no. 1, pp. 360–386, 2024, doi: 10.1007/s12011-023-03645-9.
  • [55] S. Yadav et al., “Copper‐Based Multiwavelength UV Surface Enhanced Raman Spectroscopy,” Adv. Opt. Mater., p. 2500078, 2025.
  • [56] P. H. Tsilo, A. K. Basson, Z. G. Ntombela, N. G. Dlamini, and R. V. S. R. Pullabhotla, “Biosynthesis and characterization of copper nanoparticles using a bioflocculant produced by a yeast Pichia kudriavzevii isolated from Kombucha tea SCOBY,” Appl. Nano, vol. 4, no. 3, pp. 226–239, 2023.
  • [57] M. S. Mohammed and S. E. Kadhim, “Study of the optical and structural properties of copper nanoparticles prepared via the electrochemical technique,” J. Opt., pp. 1–6, 2024.
  • [58] M. A. Sacco et al., “Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review,” Appl. Sci., vol. 15, no. 5, p. 2634, 2025.
  • [59] Z. Adamczyk, M. Sadowska, and M. Nattich-Rak, “Quantifying nanoparticle layer topography: Theoretical modeling and atomic force microscopy investigations,” Langmuir, vol. 39, no. 42, pp. 15067–15077, 2023.
  • [60] F. Noori, A. T. Neree, M. Megoura, M. A. Mateescu, and A. Azzouz, “Insights into the metal retention role in the antibacterial behavior of montmorillonite and cellulose tissue-supported copper and silver nanoparticles.,” RSC Adv., vol. 11, no. 39, pp. 24156–24171, Jul. 2021, doi: 10.1039/d1ra02854e.
  • [61] M. Bin Mobarak, M. S. Hossain, F. Chowdhury, and S. Ahmed, “Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters,” Arab. J. Chem., vol. 15, no. 10, p. 104117, 2022, doi: https://doi.org/10.1016/j.arabjc.2022.104117.
  • [62] S. Logambal et al., “Synthesis and characterizations of CuO nanoparticles using Couroupita guianensis extract for and antimicrobial applications,” J. King Saud Univ. - Sci., vol. 34, no. 3, p. 101910, 2022, doi: https://doi.org/10.1016/j.jksus.2022.101910.
  • [63] K. Mansi, R. Kumar, D. Narula, S. K. Pandey, V. Kumar, and K. Singh, “Microwave-Induced CuO Nanorods: A Comparative Approach between Curcumin, Quercetin, and Rutin to Study Their Antioxidant, Antimicrobial, and Anticancer Effects against Normal Skin Cells and Human Breast Cancer Cell Lines MCF-7 and T-47D.,” ACS Appl. bio Mater., vol. 5, no. 12, pp. 5762–5778, Dec. 2022, doi: 10.1021/acsabm.2c00769.
  • [64] J. Rodriguez-Loya, M. Lerma, and J. L. Gardea-Torresdey, “Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: a review,” Micromachines, vol. 15, no. 1, p. 24, 2023.
  • [65] N. Farkas and J. A. Kramar, “Dynamic Light Scattering Distributions by Any Means.,” J. nanoparticle Res. an Interdiscip. forum nanoscale Sci. Technol., vol. 23, no. 5, May 2021, doi: 10.1007/s11051-021-05220-6.
  • [66] A. B. G. Trabelsi et al., “Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite.,” Micromachines, vol. 14, no. 6, Jun. 2023, doi: 10.3390/mi14061195.
  • [67] D. Prieur et al., “Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles,” Inorg. Chem., vol. 59, no. 8, pp. 5760–5767, 2020.
  • [68] L. Qian, J. Zhang, W. Yang, Y. Wang, K. Chan, and X.-S. Yang, “Maintaining Grain Boundary Segregation-Induced Strengthening Effect in Extremely Fine Nanograined Metals,” Nano Lett., vol. 25, no. 13, pp. 5493–5501, 2025.
  • [69] M. Pourmadadi, R. Holghoomi, A. shamsabadipour, R. Maleki-baladi, A. Rahdar, and S. Pandey, “Copper nanoparticles from chemical, physical, and green synthesis to medicinal application: A review,” Plant Nano Biol., vol. 8, p. 100070, 2024, doi: https://doi.org/10.1016/j.plana.2024.100070.
  • [70] K. A. Altammar, “A review on nanoparticles: characteristics, synthesis, applications, and challenges,” Front. Microbiol., vol. 14, Apr. 2023, doi: 10.3389/fmicb.2023.1155622.
  • [71] S. Tyagi, R. K. Kashyap, A. Dhankhar, and P. P. Pillai, “Plasmon-powered chemistry with visible-light active copper nanoparticles,” Chem. Sci., vol. 15, no. 41, pp. 16997–17006, 2024.
  • [72] M. Omrani, H. Mohammadi, and H. Fallah, “Ultrahigh sensitive refractive index nanosensors based on nanoshells, nanocages and nanoframes: effects of plasmon hybridization and restoring force.,” Sci. Rep., vol. 11, no. 1, p. 2065, Jan. 2021, doi: 10.1038/s41598-021-81578-w.
  • [73] N. M. A. Aziz, D. A. Goda, D. I. Abdel-Meguid, E. E. El-Sharouny, and N. A. Soliman, “A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents,” Microb. Cell Fact., vol. 23, no. 1, p. 156, 2024.
  • [74] B. D. Harishchandra, M. Pappuswamy, G. Shama, V. A. Arumugam, T. Periyaswamy, and R. Sundaram, “Copper nanoparticles: a review on synthesis, characterization and applications,” Asian Pacific J. cancer Biol., vol. 5, no. 4, pp. 201–210, 2020.
  • [75] F. Liu, G. Xie, S. Wang, J. Yang, C. Chen, and X. Liu, “Excellent combination of mechanical properties and electrical conductivity obtained by minute addition of alloying elements and nanometer scaled Al2O3 in copper alloy,” Mater. Sci. Eng. A, vol. 867, p. 144689, 2023, doi: https://doi.org/10.1016/j.msea.2023.144689.
  • [76] M. Tehrani, “Advanced electrical conductors: an overview and prospects of metal nanocomposite and nanocarbon based conductors,” Phys. status solidi, vol. 218, no. 8, p. 2000704, 2021.
  • [77] W. Diao, P. Li, X. Jiang, J. Zhou, and S. Yang, “Progress in copper‐based materials for wound healing,” Wound Repair Regen., vol. 32, no. 3, pp. 314–322, 2024.
  • [78] C. Sandoval, G. Ríos, N. Sepúlveda, J. Salvo, V. Souza-Mello, and J. Farías, “Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review.,” Pharmaceutics, vol. 14, no. 9, Aug. 2022, doi: 10.3390/pharmaceutics14091838.
  • [79] J. Leitner, D. Sedmidubský, M. Lojka, and O. Jankovský, “The effect of nanosizing on the oxidation of partially oxidized copper nanoparticles,” Materials (Basel)., vol. 13, no. 12, p. 2878, 2020.
  • [80] A. Bahl, A. Pathani, N. Kumari, M. N. Manivilasam, and G. Ramesh, “Nanomaterial size and shape on melting entropy and enthalpy: A combined analysis through differential scanning calorimetry (DSC),” in AIP Conference Proceedings, AIP Publishing LLC, 2025, p. 120047.
  • [81] L.-C. Jheng et al., “Melting and Recrystallization of Copper Nanoparticles Prepared by Microwave-Assisted Reduction in the Presence of Triethylenetetramine.,” Mater. (Basel, Switzerland), vol. 13, no. 7, Mar. 2020, doi: 10.3390/ma13071507.
  • [82] L. Somlyai-Sipos, D. Janovszky, A. Sycheva, and P. Baumli, “Investigation of the melting point depression of copper nanoparticles,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, p. 12002.
  • [83] M. T. Yassin, F. O. Al-Otibi, S. A. Al-Sahli, M. S. El-Wetidy, and S. Mohamed, “Metal oxide nanoparticles as efficient nanocarriers for targeted cancer therapy: addressing chemotherapy-induced disabilities,” Cancers (Basel)., vol. 16, no. 24, p. 4234, 2024.
  • [84] M. Ahmadi, C. A. Ritter, T. von Woedtke, S. Bekeschus, and K. Wende, “Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis,” Chem. Sci., vol. 15, no. 6, pp. 1966–2006, 2024.
  • [85] Z. Xiong et al., “Delivery of gefitinib loaded nanoparticles for effectively inhibiting prostate cancer progression,” Biomater. Sci., vol. 12, no. 3, pp. 650–659, 2024.
  • [86] S. Singh and K. Pal, “Folate functionalized multifunctional CuO@PHBV@PDA nanoplatform for pH-Responsive dual drug delivery and ROS-driven apoptosis in breast cancer,” J. Drug Deliv. Sci. Technol., vol. 96, p. 105669, 2024, doi: https://doi.org/10.1016/j.jddst.2024.105669.
  • [87] X. Tang et al., “Copper in cancer: from limiting nutrient to therapeutic target.,” Front. Oncol., vol. 13, p. 1209156, 2023, doi: 10.3389/fonc.2023.1209156.
  • [88] S. Abdolmaleki, A. Aliabadi, and S. Khaksar, “Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review.,” J. Cancer Res. Clin. Oncol., vol. 150, no. 4, p. 213, Apr. 2024, doi: 10.1007/s00432-024-05641-5.
  • [89] Y.-M. Wang, L.-S. Feng, A. Xu, X.-H. Ma, M.-T. Zhang, and J. Zhang, “Copper ions: The invisible killer of cardiovascular disease,” Mol. Med. Rep., vol. 30, no. 5, p. 210, 2024.
  • [90] H. Fujikawa and J. Haruta, “Copper Deficiency: An Overlooked Diagnosis.,” Cureus, vol. 15, no. 11, p. e49139, Nov. 2023, doi: 10.7759/cureus.49139.
  • [91] S. Bonthula et al., “Recent advances in copper-based materials for sustainable environmental applications,” Sustain. Chem., vol. 4, no. 3, pp. 246–271, 2023.
  • [92] M. H. Saleem, U. Ejaz, M. Vithanage, N. Bolan, and K. H. M. Siddique, “Synthesis, characterization, and advanced sustainable applications of copper oxide nanoparticles: a review,” Clean Technol. Environ. Policy, pp. 1–26, 2024, doi: 10.1007/s10098-024-02774-6.
  • [93] M. J. Woźniak-Budych, K. Staszak, and M. Staszak, “Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges.,” Molecules, vol. 28, no. 18, Sep. 2023, doi: 10.3390/molecules28186687.
  • [94] G. P. Jose, S. Santra, S. K. Saha, S. K. Mandal, and T. K. Sengupta, “Differentiating the mechanism of antibacterial activities of nano and ionic copper by using Escherichia coli as a model microorganism,” bioRxiv, pp. 2010–2024, 2024.
  • [95] G. Vasiliev et al., “Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action,” Sci. Rep., vol. 13, no. 1, p. 9202, 2023.
  • [96] Z. Hao, M. Wang, L. Cheng, M. Si, Z. Feng, and Z. Feng, “Synergistic antibacterial mechanism of silver-copper bimetallic nanoparticles.,” Front. Bioeng. Biotechnol., vol. 11, p. 1337543, 2023, doi: 10.3389/fbioe.2023.1337543.
  • [97] M. Bekhit, E. S. Fathy, and A. Sharaf, “Effect of gamma irradiation on properties of the synthesized PANI-Cu nanoparticles assimilated into PS polymer for electromagnetic interference shielding application.,” Sci. Rep., vol. 14, no. 1, p. 16403, Jul. 2024, doi: 10.1038/s41598-024-66356-8.
  • [98] G. Borkow and E. Melamed, “The Journey of Copper-Impregnated Dressings in Wound Healing: From a Medical Hypothesis to Clinical Practice,” Biomedicines, vol. 13, no. 3, p. 562, 2025.
  • [99] A. Butsyk et al., “Copper nanoparticle loaded electrospun patches for infected wound treatment: from development to in-vivo application,” Polymers (Basel)., vol. 16, no. 19, p. 2733, 2024.
  • [100] W. W. Y. Yeo et al., “A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges.,” Mater. (Basel, Switzerland), vol. 15, no. 17, Aug. 2022, doi: 10.3390/ma15175802.
  • [101] I. A. Ivanova, D. S. Daskalova, L. P. Yordanova, and E. L. Pavlova, “Copper and copper nanoparticles applications and their role against infections: a minireview,” Processes, vol. 12, no. 2, p. 352, 2024.
  • [102] P. Sharma, D. Goyal, and B. Chudasama, “Antibacterial activity of colloidal copper nanoparticles against Gram‐negative (Escherichia coli and Proteus vulgaris) bacteria,” Lett. Appl. Microbiol., vol. 74, no. 5, pp. 695–706, 2022.
  • [103] A. I. Fernandes and A. F. Jozala, “Polymers Enhancing Bioavailability in Drug Delivery.,” Oct. 2022, Switzerland. doi: 10.3390/pharmaceutics14102199.
  • [104] L. Eltaib, “Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication,” Polymers (Basel)., vol. 17, no. 7, p. 833, 2025.
  • [105] P. Bharathy and P. V Thanikachalam, “Recent advances and future prospects in polymer-mediated drug delivery systems: a comprehensive review,” Int. J. Drug Deliv. Technol., vol. 14, no. 3, pp. 1896–1907, 2024.
  • [106] Q. Wang et al., “Elesclomol-Copper Nanoparticles Overcome Multidrug Resistance in Cancer Cells.,” ACS Appl. Mater. Interfaces, vol. 16, no. 11, pp. 13509–13524, Mar. 2024, doi: 10.1021/acsami.3c17792.
  • [107] J. I. Garcia-Peiro, J. Bonet-Aleta, and J. L. Hueso, “Copper-based nanoplatforms and their role in cancer therapy,” Coord. Chem. Rev., vol. 534, p. 216542, 2025, doi: https://doi.org/10.1016/j.ccr.2025.216542.
  • [108] J. Talapko, T. Matijević, M. Juzbašić, A. Antolović-Požgain, and I. Škrlec, “Antibacterial activity of silver and its application in dentistry, cardiology and dermatology,” Microorganisms, vol. 8, no. 9, pp. 1–13, 2020, doi: 10.3390/microorganisms8091400.
  • [109] Y. Li, Y. Dong, X. Zhou, and K. Fan, “Nanotechnology connecting copper metabolism and tumor therapy,” MedComm–Biomaterials Appl., vol. 2, no. 2, p. e36, 2023.
  • [110] A. Gupta, P. Patel, S. Shah, and K. Patel, “Nanocomposites in focus: tailoring drug delivery for enhanced therapeutic outcomes,” Futur. J. Pharm. Sci., vol. 11, no. 1, p. 37, 2025.
  • [111] P. Jagadeesh, S. M. Rangappa, and S. Siengchin, “Advanced characterization techniques for nanostructured materials in biomedical applications,” Adv. Ind. Eng. Polym. Res., vol. 7, no. 1, pp. 122–143, 2024, doi: https://doi.org/10.1016/j.aiepr.2023.03.002.
  • [112] S. Kamble et al., “Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: a comparative study with native curcumin,” Aaps PharmSciTech, vol. 17, no. 5, pp. 1030–1041, 2016.
  • [113] R. Cheng et al., “A Copper‐Based Photothermal‐Responsive Nanoplatform Reprograms Tumor Immunogenicity via Self‐Amplified Cuproptosis for Synergistic Cancer Therapy,” Adv. Sci., vol. 12, no. 19, p. 2500652, 2025.
  • [114] X. Wang, W. Shen, L. Yao, C. Li, H. You, and D. Guo, “Current status and future prospects of molecular imaging in targeting the tumor immune microenvironment,” Front. Immunol., vol. 16, p. 1518555, 2025.
  • [115] M. Samadzadeh et al., “Molecular imaging using (nano) probes: cutting-edge developments and clinical challenges in diagnostics,” RSC Adv., vol. 15, no. 30, pp. 24696–24725, 2025.
  • [116] K. Babu Busi et al., “The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection.,” Nanomater. (Basel, Switzerland), vol. 12, no. 3, Jan. 2022, doi: 10.3390/nano12030301.
  • [117] M. Lettieri, P. Palladino, S. Scarano, and M. Minunni, “Copper nanoclusters and their application for innovative fluorescent detection strategies: An overview,” Sensors and Actuators Reports, vol. 4, p. 100108, 2022, doi: https://doi.org/10.1016/j.snr.2022.100108.
  • [118] M. Ramadurai, G. Rajendran, T. S. Bama, P. Prabhu, and K. Kathiravan, “Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells,” J. Photochem. Photobiol. B Biol., vol. 205, p. 111845, 2020, doi: https://doi.org/10.1016/j.jphotobiol.2020.111845.
  • [119] O. O. Krasnovskaya et al., “Recent advances in 64Cu/67Cu-based radiopharmaceuticals,” Int. J. Mol. Sci., vol. 24, no. 11, p. 9154, 2023.
  • [120] K. Stockhofe, J. M. Postema, H. Schieferstein, and T. L. Ross, “Radiolabeling of nanoparticles and polymers for PET imaging,” Pharmaceuticals, vol. 7, no. 4, pp. 392–418, 2014.
  • [121] A. Ghandili, “Recent Advances on Antimicrobial Properties and Biomedical Applications of Copper Nanoparticles,” 2024.
  • [122] J. Ramos-Zúñiga, N. Bruna, and J. M. Pérez-Donoso, “Toxicity mechanisms of copper nanoparticles and copper surfaces on bacterial cells and viruses,” Int. J. Mol. Sci., vol. 24, no. 13, p. 10503, 2023.
  • [123] H. L. Karlsson et al., “Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.,” Toxicology, vol. 313, no. 1, pp. 59–69, Nov. 2013, doi: 10.1016/j.tox.2013.07.012.
  • [124] E. Moschini, G. Colombo, G. Chirico, G. Capitani, I. Dalle-Donne, and P. Mantecca, “Biological mechanism of cell oxidative stress and death during short-term exposure to nano CuO,” Sci. Rep., vol. 13, no. 1, p. 2326, 2023.
  • [125] A. Sielska and L. Skuza, “Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks,” Curr. Issues Mol. Biol., vol. 47, no. 6, p. 472, 2025.
  • [126] T. Ameh, M. Gibb, D. Stevens, S. H. Pradhan, E. Braswell, and C. M. Sayes, “Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells,” Nanomaterials, vol. 12, no. 14, p. 2402, 2022.
  • [127] K. Jomova, S. Y. Alomar, E. Nepovimova, K. Kuca, and M. Valko, “Heavy metals: toxicity and human health effects,” Arch. Toxicol., vol. 99, no. 1, pp. 153–209, 2025.
  • [128] T. Ameh and C. M. Sayes, “The potential exposure and hazards of copper nanoparticles: A review,” Environ. Toxicol. Pharmacol., vol. 71, p. 103220, 2019.
  • [129] K. Harini et al., “Nano-mediated strategies for metal ion–induced neurodegenerative disorders: focus on Alzheimer’s and Parkinson’s diseases,” Curr. Pharmacol. Reports, vol. 8, no. 6, pp. 450–463, 2022.
  • [130] H. W. Ejaz, W. Wang, and M. Lang, “Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches,” Int. J. Mol. Sci., vol. 21, no. 20, p. 7660, 2020.
  • [131] M. P. J. V. K. K. D. Vetchý, “Biological role of copper as an essential trace element in the human organism.,” Ces. a Slov. Farm. Cas. Ces. Farm. Spol. a Slov. Farm. Spol., vol. 67, no. 4, pp. 143–153, 2018.
  • [132] G. Naikoo et al., “An overview of copper nanoparticles: synthesis, characterisation and anticancer activity,” Curr. Pharm. Des., vol. 27, no. 43, pp. 4416–4432, 2021.
  • [133] M. Pohanka, “Copper and copper nanoparticles toxicity and their impact on basic functions in the body,” Bratisl. Lek. List., vol. 120, no. 6, pp. 397–409, 2019.
  • [134] I. Na and D. C. Kennedy, “Size-specific copper nanoparticle cytotoxicity varies between human cell lines,” Int. J. Mol. Sci., vol. 22, no. 4, p. 1548, 2021.
  • [135] I.-C. Lee et al., “Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats.,” Int. J. Nanomedicine, vol. 11, pp. 2883–2900, 2016, doi: 10.2147/IJN.S106346.

Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine

Year 2025, Issue: 014, 24 - 40, 30.12.2025

Abstract

Copper nanoparticles (CuNPs) have emerged as versatile nanomaterials with significant biomedical potential owing to their unique optical, electrical, thermal, and catalytic properties. As an essential trace element, copper plays a pivotal role in various physiological processes, including metabolism, cardiovascular health, and tissue regeneration, making its nanoscale forms particularly relevant for medical applications. This review offers a thorough synthesis of existing research on CuNPs. encompassing their preparation via chemical, physical, and biologically mediated (“green”) approaches, alongside detailed characterization techniques essential for correlating size, morphology, and surface chemistry with biological performance. Special emphasis is placed on their multifunctional roles in antimicrobial therapy, targeted drug delivery, cancer treatment, and imaging-guided diagnostics, as well as their integration into theranostic platforms. The toxicological profile of CuNPs, including their cellular interactions, reactive oxygen species (ROS) generation, and potential environmental impact, is critically discussed. Furthermore, the review outlines recent advances and future perspectives, highlighting the importance of precise synthesis control, advanced characterization, and rigorous safety evaluation to facilitate their safe and effective clinical translation. This review aims to link synthesis strategies, physicochemical properties, and biomedical functionalities of CuNPs while identifying challenges and research priorities that can accelerate their translation from laboratory to clinical practice.

References

  • [1] L. Chen, J. Min, and F. Wang, “Copper homeostasis and cuproptosis in health and disease,” Signal Transduct. Target. Ther., vol. 7, no. 1, p. 378, 2022.
  • [2] X. Chen et al., “Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies,” Cell Death Dis., vol. 14, no. 2, p. 105, 2023.
  • [3] J. Sailer et al., “Deadly excess copper.” Redox Biol., vol. 75, p. 103256, Sep. 2024, doi: 10.1016/j.redox.2024.103256.
  • [4] M. Rondanelli et al., “Copper as dietary supplement for bone metabolism: a review,” Nutrients, vol. 13, no. 7, p. 2246, 2021.
  • [5] R. Liu, J. Yao, K. Chen, and W. Peng, “Association between biomarkers of zinc and copper status and heart failure: a meta-analysis.” ESC Hear. Fail., vol. 11, no. 5, pp. 2546–2556, Oct. 2024, doi: 10.1002/ehf2.14837.
  • [6] J. Naradala, A. Allam, V. R. Tumu, and R. K. Rajaboina, “Antibacterial activity of copper nanoparticles synthesized by Bambusa arundinacea leaves extract,” Biointerface Res. Appl. Chem, vol. 12, pp. 1230–1236, 2021.
  • [7] G. M. El-Sherbiny, M. E. Shehata, and M. H. Kalaba, “Biogenic copper and copper oxide nanoparticles to combat multidrug-resistant Staphylococcus aureus: Green synthesis, mechanisms, resistance, and future perspectives,” Biotechnol. Reports, vol. 46, p. e00896, 2025, doi: https://doi.org/10.1016/j.btre.2025.e00896.
  • [8] S. V. Gudkov, D. E. Burmistrov, P. A. Fomina, S. Z. Validov, and V. A. Kozlov, “Antibacterial properties of copper oxide nanoparticles,” Int. J. Mol. Sci., vol. 25, no. 21, p. 11563, 2024.
  • [9] S. Talebian, B. Shahnavaz, M. Nejabat, Y. Abolhassani, and F. B. Rassouli, “Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials,” Front. Bioeng. Biotechnol., vol. 11, p. 1140010, 2023.
  • [10] V. Molahalli et al., “Properties, synthesis, and characterization of Cu-based nanomaterials,” in Copper-based nanomaterials in organic transformations, ACS Publications, 2024, pp. 1–33.
  • [11] A. Pricop et al., “Copper Nanoparticles Synthesized by Chemical Reduction with Medical Applications,” Int. J. Mol. Sci., vol. 26, no. 4, p. 1628, 2025.
  • [12] D. M. Nzilu, E. S. Madivoli, D. S. Makhanu, S. I. Wanakai, G. K. Kiprono, and P. G. Kareru, “Green synthesis of copper oxide nanoparticles and their efficiency in the degradation of rifampicin antibiotic,” Sci. Rep., vol. 13, no. 1, p. 14030, 2023.
  • [13] Q. Wei, Y. Pan, Z. Zhang, S. Yan, and Z. Li, “Copper-based nanomaterials for biomedical applications,” Chem. Eng. J., vol. 483, p. 149040, 2024, doi: https://doi.org/10.1016/j.cej.2024.149040.
  • [14] M. Devaraji, P. V Thanikachalam, and K. Elumalai, “The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review.” Biotechnol. Notes (Amsterdam, Netherlands), vol. 5, pp. 80–99, 2024, doi: 10.1016/j.biotno.2024.06.001.
  • [15] S. Adewale Akintelu, A. Kolawole Oyebamiji, S. Charles Olugbeko, and D. Felix Latona, “Green chemistry approach towards the synthesis of copper nanoparticles and their potential applications as therapeutic agents and environmental control,” Curr. Res. Green Sustain. Chem., vol. 4, p. 100176, 2021, doi: https://doi.org/10.1016/j.crgsc.2021.100176.
  • [16] A. I. Osman et al., “Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review,” Environ. Chem. Lett., vol. 22, no. 2, pp. 841–887, 2024, doi: 10.1007/s10311-023-01682-3.
  • [17] A. Antonio-Pérez, L. F. Durán-Armenta, M. G. Pérez-Loredo, and A. L. Torres-Huerta, “Biosynthesis of copper nanoparticles with medicinal plants extracts: From extraction methods to applications,” Micromachines, vol. 14, no. 10, p. 1882, 2023.
  • [18] A. G. Krishna, S. Sahana, H. Venkatesan, and V. Arul, “Green synthesis of copper nanoparticles: a promising solution for drug resistance and cancer therapy challenges,” J. Egypt. Natl. Canc. Inst., vol. 36, no. 1, p. 44, 2024.
  • [19] E. Dwivedi and L. K. Singh, “Comprehensive review on biological synthesis of copper nanoparticles and their multivariate applications,” Adv. Appl. Sci. Res, vol. 13, p. 99, 2022.
  • [20] N. C. Nkosi, A. K. Basson, Z. G. Ntombela, N. G. Dlamini, and R. V. S. R. Pullabhotla, “A review on bioflocculant-synthesized copper nanoparticles: characterization and application in wastewater treatment,” Bioengineering, vol. 11, no. 10, p. 1007, 2024.
  • [21] Y. T. Gebreslassie and F. G. Gebremeskel, “Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications,” Biotechnol. Reports, vol. 41, p. e00828, 2024, doi: https://doi.org/10.1016/j.btre.2024.e00828.
  • [22] A. Kumar, A. Saxena, A. De, R. Shankar, and S. Mozumdar, “Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions,” Rsc Adv., vol. 3, no. 15, pp. 5015–5021, 2013.
  • [23] A. Vinukonda, N. Bolledla, R. K. Jadi, R. Chinthala, and V. R. Devadasu, “Synthesis of nanoparticles using advanced techniques,” Next Nanotechnol., vol. 8, p. 100169, 2025, doi: https://doi.org/10.1016/j.nxnano.2025.100169.
  • [24] A. M. Abu-Dief, W. H. Alsaedi, and M. M. Zikry, “A collective study on the fabrication of nano-materials for water treatment,” J. Umm Al-Qura Univ. Appl. Sci., pp. 1–23, 2025.
  • [25] M. Priya et al., “Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract,” Sci. Rep., vol. 13, no. 1, p. 18838, 2023.
  • [26] P. Kashyap, P. Shirkot, R. Das, H. Pandey, and D. Singh, “Biosynthesis and characterization of copper nanoparticles from Stenotrophomonas maltophilia and its effect on plant pathogens and pesticide degradation,” J. Agric. Food Res., vol. 13, p. 100654, 2023, doi: https://doi.org/10.1016/j.jafr.2023.100654.
  • [27] D. Tank et al., “Recent advances in phyto-and microorganisms-mediated synthesis of copper nanoparticles and their emerging applications in healthcare, environment, agriculture and food industry,” Bioprocess Biosyst. Eng., pp. 1–34, 2025.
  • [28] V. V. Gande and S. Pushpavanam, “Continuous synthesis of copper nanoparticles using a polyol process in a milli-channel reactor,” J. Flow Chem., vol. 11, no. 3, pp. 661–674, 2021.
  • [29] A. P. Onivefu, A. Efunnuga, A. Efunnuga, M. Maliki, I. H. Ifijen, and S. O. Omorogbe, “Photoresist performance: an exploration of synthesis, surface modification techniques, properties tailoring, and challenges navigation in copper/copper oxide nanoparticle applications,” Biomed. Mater. Devices, vol. 3, no. 1, pp. 62–92, 2025.
  • [30] C. M. Luque-Jacobo et al., “Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications,” Molecules, vol. 28, no. 12, Jun. 2023, doi: 10.3390/molecules28124838.
  • [31] D. Okyere, R. H. Manso, X. Tong, and J. Chen, “Stability of polyethylene glycol-coated copper nanoparticles and their optical properties,” Coatings, vol. 12, no. 6, p. 776, 2022.
  • [32] A. Ates and C. Hardacre, “The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments,” J. Colloid Interface Sci., vol. 372, no. 1, pp. 130–140, 2012, doi: https://doi.org/10.1016/j.jcis.2012.01.017.
  • [33] R. Lu, W. Hao, L. Kong, K. Zhao, H. Bai, and Z. Liu, “A simple method for the synthesis of copper nanoparticles from metastable intermediates,” RSC Adv., vol. 13, no. 21, pp. 14361–14369, 2023.
  • [34] A. Conte et al., “Advanced morphological control over Cu nanowires through a design of experiments approach,” Mater. Adv., vol. 5, no. 22, pp. 8836–8846, 2024.
  • [35] M. B. Gawande et al., “Cu and Cu-based nanoparticles: synthesis and applications in catalysis,” Chem. Rev., vol. 116, no. 6, pp. 3722–3811, 2016.
  • [36] M. Baláž et al., “Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach,” Adv. Powder Technol., vol. 31, no. 2, pp. 782–791, 2020, doi: https://doi.org/10.1016/j.apt.2019.11.032.
  • [37] H. Förster, C. Wolfrum, and W. Peukert, “Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process,” J. Nanoparticle Res., vol. 14, no. 7, p. 926, 2012.
  • [38] A. Nyabadza et al., “A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage,” Adv. Colloid Interface Sci., vol. 321, p. 103010, 2023.
  • [39] C. Lo Pò et al., “Cu-based nanocatalyst by pulsed laser ablation in liquid for water splitting: Effect of the solvent,” J. Phys. Chem. Solids, vol. 193, p. 112162, 2024, doi: https://doi.org/10.1016/j.jpcs.2024.112162.
  • [40] T. Khamliche, S. Khamlich, M. K. Moodley, B. M. Mothudi, M. Henini, and M. Maaza, “Laser fabrication of Cu nanoparticles based nanofluid with enhanced thermal conductivity: Experimental and molecular dynamics studies,” J. Mol. Liq., vol. 323, p. 114975, 2021, doi: https://doi.org/10.1016/j.molliq.2020.114975.
  • [41] P. G. Bhavyasree and T. S. Xavier, “Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: Review,” Curr. Res. Green Sustain. Chem., vol. 5, p. 100249, 2022, doi: https://doi.org/10.1016/j.crgsc.2021.100249.
  • [42] V. Vatanpour, O. O. Teber, M. Mehrabi, and I. Koyuncu, “Polyvinyl alcohol-based separation membranes: a comprehensive review on fabrication techniques, applications and future prospective,” Mater. Today Chem., vol. 28, p. 101381, 2023, doi: https://doi.org/10.1016/j.mtchem.2023.101381.
  • [43] N. Chakraborty et al., “Green synthesis of copper/copper oxide nanoparticles and their applications: a review,” Green Chem. Lett. Rev., vol. 15, no. 1, pp. 187–215, 2022.
  • [44] N. S. Alsaiari et al., “Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives,” Molecules, vol. 28, no. 1, p. 463, 2023, doi: 10.3390/molecules28010463.
  • [45] T. T. Tran et al., “pH-Dependent Morphology of Copper (II) Oxide in Hydrothermal Process and Their Photoelectrochemical Application for Non-Enzymatic Glucose Biosensor,” Appl. Sci., vol. 14, no. 13, p. 5688, 2024.
  • [46] Y. Cui et al., “Denitrification performance and in-situ fermentation mechanism of the wastepaper-flora slow-release carbon source,” Bioresour. Technol., vol. 380, p. 129074, 2023, doi: https://doi.org/10.1016/j.biortech.2023.129074.
  • [47] V. D. Kannan et al., “Ecofriendly bio-synthesis and spectral characterization of copper nanoparticles using fruit extract of Pedalium murex L.: in vitro evaluation of antimicrobial, antioxidant and anticancer activities on human lung cancer A549 cell line,” Mater. Technol., vol. 39, no. 1, p. 2286818, 2024.
  • [48] S. J. Figueroa Ramírez, B. Escobar Morales, D. A. Pantoja Velueta, J. M. T. Sierra Grajeda, I. L. Alonso Lemus, and C. A. Aguilar Ucán, “Green Synthesis of Copper Nanoparticles Using Sargassum spp. for Electrochemical Reduction of CO(2).” ChemistryOpen, vol. 13, no. 5, p. e202300190, May 2024, doi: 10.1002/open.202300190.
  • [49] D. Kirubakaran, K. Selvam, M. Dhaneeshram, M. S. Shivakumar, M. Rajkumar, and A. Shanmugarathinam, “Biogenic synthesis of copper nanoparticle using Impatiens chinensis L: insights into antimicrobial, antioxidant and anticancer activity,” J. Mol. Struct., vol. 1317, p. 138991, 2024, doi: https://doi.org/10.1016/j.molstruc.2024.138991.
  • [50] A. S. Pozdnyakov et al., “Green synthesis of stable nanocomposites containing copper nanoparticles incorporated in poly-N-vinylimidazole,” Polymers (Basel)., vol. 13, no. 19, p. 3212, 2021.
  • [51] J. Neiva, Z. Benzarti, S. Carvalho, and S. Devesa, “Green Synthesis of CuO Nanoparticles-Structural, Morphological, and Dielectric Characterization.,” Mater. (Basel, Switzerland), vol. 17, no. 23, Nov. 2024, doi: 10.3390/ma17235709.
  • [52] S. Tyagi, A. Kumar, P. K. Tyagi, and M. Hatami, “Development and characterization of biogenic copper oxide nanoparticles, with an exploration of their antibacterial and antioxidant potential.,” 3 Biotech, vol. 14, no. 1, p. 20, Jan. 2024, doi: 10.1007/s13205-023-03869-5.
  • [53] M. Piergiovanni et al., “The Combined ICP-MS, ESEM-EDX, and HAADF-STEM-EDX Approach for the Assessment of Metal Sub-Micro- and Nanoparticles in Wheat Grain.,” Molecules, vol. 29, no. 13, Jul. 2024, doi: 10.3390/molecules29133148.
  • [54] S. Vijayaram et al., “Applications of Green Synthesized Metal Nanoparticles — a Review,” Biol. Trace Elem. Res., vol. 202, no. 1, pp. 360–386, 2024, doi: 10.1007/s12011-023-03645-9.
  • [55] S. Yadav et al., “Copper‐Based Multiwavelength UV Surface Enhanced Raman Spectroscopy,” Adv. Opt. Mater., p. 2500078, 2025.
  • [56] P. H. Tsilo, A. K. Basson, Z. G. Ntombela, N. G. Dlamini, and R. V. S. R. Pullabhotla, “Biosynthesis and characterization of copper nanoparticles using a bioflocculant produced by a yeast Pichia kudriavzevii isolated from Kombucha tea SCOBY,” Appl. Nano, vol. 4, no. 3, pp. 226–239, 2023.
  • [57] M. S. Mohammed and S. E. Kadhim, “Study of the optical and structural properties of copper nanoparticles prepared via the electrochemical technique,” J. Opt., pp. 1–6, 2024.
  • [58] M. A. Sacco et al., “Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review,” Appl. Sci., vol. 15, no. 5, p. 2634, 2025.
  • [59] Z. Adamczyk, M. Sadowska, and M. Nattich-Rak, “Quantifying nanoparticle layer topography: Theoretical modeling and atomic force microscopy investigations,” Langmuir, vol. 39, no. 42, pp. 15067–15077, 2023.
  • [60] F. Noori, A. T. Neree, M. Megoura, M. A. Mateescu, and A. Azzouz, “Insights into the metal retention role in the antibacterial behavior of montmorillonite and cellulose tissue-supported copper and silver nanoparticles.,” RSC Adv., vol. 11, no. 39, pp. 24156–24171, Jul. 2021, doi: 10.1039/d1ra02854e.
  • [61] M. Bin Mobarak, M. S. Hossain, F. Chowdhury, and S. Ahmed, “Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters,” Arab. J. Chem., vol. 15, no. 10, p. 104117, 2022, doi: https://doi.org/10.1016/j.arabjc.2022.104117.
  • [62] S. Logambal et al., “Synthesis and characterizations of CuO nanoparticles using Couroupita guianensis extract for and antimicrobial applications,” J. King Saud Univ. - Sci., vol. 34, no. 3, p. 101910, 2022, doi: https://doi.org/10.1016/j.jksus.2022.101910.
  • [63] K. Mansi, R. Kumar, D. Narula, S. K. Pandey, V. Kumar, and K. Singh, “Microwave-Induced CuO Nanorods: A Comparative Approach between Curcumin, Quercetin, and Rutin to Study Their Antioxidant, Antimicrobial, and Anticancer Effects against Normal Skin Cells and Human Breast Cancer Cell Lines MCF-7 and T-47D.,” ACS Appl. bio Mater., vol. 5, no. 12, pp. 5762–5778, Dec. 2022, doi: 10.1021/acsabm.2c00769.
  • [64] J. Rodriguez-Loya, M. Lerma, and J. L. Gardea-Torresdey, “Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: a review,” Micromachines, vol. 15, no. 1, p. 24, 2023.
  • [65] N. Farkas and J. A. Kramar, “Dynamic Light Scattering Distributions by Any Means.,” J. nanoparticle Res. an Interdiscip. forum nanoscale Sci. Technol., vol. 23, no. 5, May 2021, doi: 10.1007/s11051-021-05220-6.
  • [66] A. B. G. Trabelsi et al., “Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite.,” Micromachines, vol. 14, no. 6, Jun. 2023, doi: 10.3390/mi14061195.
  • [67] D. Prieur et al., “Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles,” Inorg. Chem., vol. 59, no. 8, pp. 5760–5767, 2020.
  • [68] L. Qian, J. Zhang, W. Yang, Y. Wang, K. Chan, and X.-S. Yang, “Maintaining Grain Boundary Segregation-Induced Strengthening Effect in Extremely Fine Nanograined Metals,” Nano Lett., vol. 25, no. 13, pp. 5493–5501, 2025.
  • [69] M. Pourmadadi, R. Holghoomi, A. shamsabadipour, R. Maleki-baladi, A. Rahdar, and S. Pandey, “Copper nanoparticles from chemical, physical, and green synthesis to medicinal application: A review,” Plant Nano Biol., vol. 8, p. 100070, 2024, doi: https://doi.org/10.1016/j.plana.2024.100070.
  • [70] K. A. Altammar, “A review on nanoparticles: characteristics, synthesis, applications, and challenges,” Front. Microbiol., vol. 14, Apr. 2023, doi: 10.3389/fmicb.2023.1155622.
  • [71] S. Tyagi, R. K. Kashyap, A. Dhankhar, and P. P. Pillai, “Plasmon-powered chemistry with visible-light active copper nanoparticles,” Chem. Sci., vol. 15, no. 41, pp. 16997–17006, 2024.
  • [72] M. Omrani, H. Mohammadi, and H. Fallah, “Ultrahigh sensitive refractive index nanosensors based on nanoshells, nanocages and nanoframes: effects of plasmon hybridization and restoring force.,” Sci. Rep., vol. 11, no. 1, p. 2065, Jan. 2021, doi: 10.1038/s41598-021-81578-w.
  • [73] N. M. A. Aziz, D. A. Goda, D. I. Abdel-Meguid, E. E. El-Sharouny, and N. A. Soliman, “A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents,” Microb. Cell Fact., vol. 23, no. 1, p. 156, 2024.
  • [74] B. D. Harishchandra, M. Pappuswamy, G. Shama, V. A. Arumugam, T. Periyaswamy, and R. Sundaram, “Copper nanoparticles: a review on synthesis, characterization and applications,” Asian Pacific J. cancer Biol., vol. 5, no. 4, pp. 201–210, 2020.
  • [75] F. Liu, G. Xie, S. Wang, J. Yang, C. Chen, and X. Liu, “Excellent combination of mechanical properties and electrical conductivity obtained by minute addition of alloying elements and nanometer scaled Al2O3 in copper alloy,” Mater. Sci. Eng. A, vol. 867, p. 144689, 2023, doi: https://doi.org/10.1016/j.msea.2023.144689.
  • [76] M. Tehrani, “Advanced electrical conductors: an overview and prospects of metal nanocomposite and nanocarbon based conductors,” Phys. status solidi, vol. 218, no. 8, p. 2000704, 2021.
  • [77] W. Diao, P. Li, X. Jiang, J. Zhou, and S. Yang, “Progress in copper‐based materials for wound healing,” Wound Repair Regen., vol. 32, no. 3, pp. 314–322, 2024.
  • [78] C. Sandoval, G. Ríos, N. Sepúlveda, J. Salvo, V. Souza-Mello, and J. Farías, “Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review.,” Pharmaceutics, vol. 14, no. 9, Aug. 2022, doi: 10.3390/pharmaceutics14091838.
  • [79] J. Leitner, D. Sedmidubský, M. Lojka, and O. Jankovský, “The effect of nanosizing on the oxidation of partially oxidized copper nanoparticles,” Materials (Basel)., vol. 13, no. 12, p. 2878, 2020.
  • [80] A. Bahl, A. Pathani, N. Kumari, M. N. Manivilasam, and G. Ramesh, “Nanomaterial size and shape on melting entropy and enthalpy: A combined analysis through differential scanning calorimetry (DSC),” in AIP Conference Proceedings, AIP Publishing LLC, 2025, p. 120047.
  • [81] L.-C. Jheng et al., “Melting and Recrystallization of Copper Nanoparticles Prepared by Microwave-Assisted Reduction in the Presence of Triethylenetetramine.,” Mater. (Basel, Switzerland), vol. 13, no. 7, Mar. 2020, doi: 10.3390/ma13071507.
  • [82] L. Somlyai-Sipos, D. Janovszky, A. Sycheva, and P. Baumli, “Investigation of the melting point depression of copper nanoparticles,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, p. 12002.
  • [83] M. T. Yassin, F. O. Al-Otibi, S. A. Al-Sahli, M. S. El-Wetidy, and S. Mohamed, “Metal oxide nanoparticles as efficient nanocarriers for targeted cancer therapy: addressing chemotherapy-induced disabilities,” Cancers (Basel)., vol. 16, no. 24, p. 4234, 2024.
  • [84] M. Ahmadi, C. A. Ritter, T. von Woedtke, S. Bekeschus, and K. Wende, “Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis,” Chem. Sci., vol. 15, no. 6, pp. 1966–2006, 2024.
  • [85] Z. Xiong et al., “Delivery of gefitinib loaded nanoparticles for effectively inhibiting prostate cancer progression,” Biomater. Sci., vol. 12, no. 3, pp. 650–659, 2024.
  • [86] S. Singh and K. Pal, “Folate functionalized multifunctional CuO@PHBV@PDA nanoplatform for pH-Responsive dual drug delivery and ROS-driven apoptosis in breast cancer,” J. Drug Deliv. Sci. Technol., vol. 96, p. 105669, 2024, doi: https://doi.org/10.1016/j.jddst.2024.105669.
  • [87] X. Tang et al., “Copper in cancer: from limiting nutrient to therapeutic target.,” Front. Oncol., vol. 13, p. 1209156, 2023, doi: 10.3389/fonc.2023.1209156.
  • [88] S. Abdolmaleki, A. Aliabadi, and S. Khaksar, “Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review.,” J. Cancer Res. Clin. Oncol., vol. 150, no. 4, p. 213, Apr. 2024, doi: 10.1007/s00432-024-05641-5.
  • [89] Y.-M. Wang, L.-S. Feng, A. Xu, X.-H. Ma, M.-T. Zhang, and J. Zhang, “Copper ions: The invisible killer of cardiovascular disease,” Mol. Med. Rep., vol. 30, no. 5, p. 210, 2024.
  • [90] H. Fujikawa and J. Haruta, “Copper Deficiency: An Overlooked Diagnosis.,” Cureus, vol. 15, no. 11, p. e49139, Nov. 2023, doi: 10.7759/cureus.49139.
  • [91] S. Bonthula et al., “Recent advances in copper-based materials for sustainable environmental applications,” Sustain. Chem., vol. 4, no. 3, pp. 246–271, 2023.
  • [92] M. H. Saleem, U. Ejaz, M. Vithanage, N. Bolan, and K. H. M. Siddique, “Synthesis, characterization, and advanced sustainable applications of copper oxide nanoparticles: a review,” Clean Technol. Environ. Policy, pp. 1–26, 2024, doi: 10.1007/s10098-024-02774-6.
  • [93] M. J. Woźniak-Budych, K. Staszak, and M. Staszak, “Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges.,” Molecules, vol. 28, no. 18, Sep. 2023, doi: 10.3390/molecules28186687.
  • [94] G. P. Jose, S. Santra, S. K. Saha, S. K. Mandal, and T. K. Sengupta, “Differentiating the mechanism of antibacterial activities of nano and ionic copper by using Escherichia coli as a model microorganism,” bioRxiv, pp. 2010–2024, 2024.
  • [95] G. Vasiliev et al., “Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action,” Sci. Rep., vol. 13, no. 1, p. 9202, 2023.
  • [96] Z. Hao, M. Wang, L. Cheng, M. Si, Z. Feng, and Z. Feng, “Synergistic antibacterial mechanism of silver-copper bimetallic nanoparticles.,” Front. Bioeng. Biotechnol., vol. 11, p. 1337543, 2023, doi: 10.3389/fbioe.2023.1337543.
  • [97] M. Bekhit, E. S. Fathy, and A. Sharaf, “Effect of gamma irradiation on properties of the synthesized PANI-Cu nanoparticles assimilated into PS polymer for electromagnetic interference shielding application.,” Sci. Rep., vol. 14, no. 1, p. 16403, Jul. 2024, doi: 10.1038/s41598-024-66356-8.
  • [98] G. Borkow and E. Melamed, “The Journey of Copper-Impregnated Dressings in Wound Healing: From a Medical Hypothesis to Clinical Practice,” Biomedicines, vol. 13, no. 3, p. 562, 2025.
  • [99] A. Butsyk et al., “Copper nanoparticle loaded electrospun patches for infected wound treatment: from development to in-vivo application,” Polymers (Basel)., vol. 16, no. 19, p. 2733, 2024.
  • [100] W. W. Y. Yeo et al., “A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges.,” Mater. (Basel, Switzerland), vol. 15, no. 17, Aug. 2022, doi: 10.3390/ma15175802.
  • [101] I. A. Ivanova, D. S. Daskalova, L. P. Yordanova, and E. L. Pavlova, “Copper and copper nanoparticles applications and their role against infections: a minireview,” Processes, vol. 12, no. 2, p. 352, 2024.
  • [102] P. Sharma, D. Goyal, and B. Chudasama, “Antibacterial activity of colloidal copper nanoparticles against Gram‐negative (Escherichia coli and Proteus vulgaris) bacteria,” Lett. Appl. Microbiol., vol. 74, no. 5, pp. 695–706, 2022.
  • [103] A. I. Fernandes and A. F. Jozala, “Polymers Enhancing Bioavailability in Drug Delivery.,” Oct. 2022, Switzerland. doi: 10.3390/pharmaceutics14102199.
  • [104] L. Eltaib, “Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication,” Polymers (Basel)., vol. 17, no. 7, p. 833, 2025.
  • [105] P. Bharathy and P. V Thanikachalam, “Recent advances and future prospects in polymer-mediated drug delivery systems: a comprehensive review,” Int. J. Drug Deliv. Technol., vol. 14, no. 3, pp. 1896–1907, 2024.
  • [106] Q. Wang et al., “Elesclomol-Copper Nanoparticles Overcome Multidrug Resistance in Cancer Cells.,” ACS Appl. Mater. Interfaces, vol. 16, no. 11, pp. 13509–13524, Mar. 2024, doi: 10.1021/acsami.3c17792.
  • [107] J. I. Garcia-Peiro, J. Bonet-Aleta, and J. L. Hueso, “Copper-based nanoplatforms and their role in cancer therapy,” Coord. Chem. Rev., vol. 534, p. 216542, 2025, doi: https://doi.org/10.1016/j.ccr.2025.216542.
  • [108] J. Talapko, T. Matijević, M. Juzbašić, A. Antolović-Požgain, and I. Škrlec, “Antibacterial activity of silver and its application in dentistry, cardiology and dermatology,” Microorganisms, vol. 8, no. 9, pp. 1–13, 2020, doi: 10.3390/microorganisms8091400.
  • [109] Y. Li, Y. Dong, X. Zhou, and K. Fan, “Nanotechnology connecting copper metabolism and tumor therapy,” MedComm–Biomaterials Appl., vol. 2, no. 2, p. e36, 2023.
  • [110] A. Gupta, P. Patel, S. Shah, and K. Patel, “Nanocomposites in focus: tailoring drug delivery for enhanced therapeutic outcomes,” Futur. J. Pharm. Sci., vol. 11, no. 1, p. 37, 2025.
  • [111] P. Jagadeesh, S. M. Rangappa, and S. Siengchin, “Advanced characterization techniques for nanostructured materials in biomedical applications,” Adv. Ind. Eng. Polym. Res., vol. 7, no. 1, pp. 122–143, 2024, doi: https://doi.org/10.1016/j.aiepr.2023.03.002.
  • [112] S. Kamble et al., “Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: a comparative study with native curcumin,” Aaps PharmSciTech, vol. 17, no. 5, pp. 1030–1041, 2016.
  • [113] R. Cheng et al., “A Copper‐Based Photothermal‐Responsive Nanoplatform Reprograms Tumor Immunogenicity via Self‐Amplified Cuproptosis for Synergistic Cancer Therapy,” Adv. Sci., vol. 12, no. 19, p. 2500652, 2025.
  • [114] X. Wang, W. Shen, L. Yao, C. Li, H. You, and D. Guo, “Current status and future prospects of molecular imaging in targeting the tumor immune microenvironment,” Front. Immunol., vol. 16, p. 1518555, 2025.
  • [115] M. Samadzadeh et al., “Molecular imaging using (nano) probes: cutting-edge developments and clinical challenges in diagnostics,” RSC Adv., vol. 15, no. 30, pp. 24696–24725, 2025.
  • [116] K. Babu Busi et al., “The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection.,” Nanomater. (Basel, Switzerland), vol. 12, no. 3, Jan. 2022, doi: 10.3390/nano12030301.
  • [117] M. Lettieri, P. Palladino, S. Scarano, and M. Minunni, “Copper nanoclusters and their application for innovative fluorescent detection strategies: An overview,” Sensors and Actuators Reports, vol. 4, p. 100108, 2022, doi: https://doi.org/10.1016/j.snr.2022.100108.
  • [118] M. Ramadurai, G. Rajendran, T. S. Bama, P. Prabhu, and K. Kathiravan, “Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells,” J. Photochem. Photobiol. B Biol., vol. 205, p. 111845, 2020, doi: https://doi.org/10.1016/j.jphotobiol.2020.111845.
  • [119] O. O. Krasnovskaya et al., “Recent advances in 64Cu/67Cu-based radiopharmaceuticals,” Int. J. Mol. Sci., vol. 24, no. 11, p. 9154, 2023.
  • [120] K. Stockhofe, J. M. Postema, H. Schieferstein, and T. L. Ross, “Radiolabeling of nanoparticles and polymers for PET imaging,” Pharmaceuticals, vol. 7, no. 4, pp. 392–418, 2014.
  • [121] A. Ghandili, “Recent Advances on Antimicrobial Properties and Biomedical Applications of Copper Nanoparticles,” 2024.
  • [122] J. Ramos-Zúñiga, N. Bruna, and J. M. Pérez-Donoso, “Toxicity mechanisms of copper nanoparticles and copper surfaces on bacterial cells and viruses,” Int. J. Mol. Sci., vol. 24, no. 13, p. 10503, 2023.
  • [123] H. L. Karlsson et al., “Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.,” Toxicology, vol. 313, no. 1, pp. 59–69, Nov. 2013, doi: 10.1016/j.tox.2013.07.012.
  • [124] E. Moschini, G. Colombo, G. Chirico, G. Capitani, I. Dalle-Donne, and P. Mantecca, “Biological mechanism of cell oxidative stress and death during short-term exposure to nano CuO,” Sci. Rep., vol. 13, no. 1, p. 2326, 2023.
  • [125] A. Sielska and L. Skuza, “Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks,” Curr. Issues Mol. Biol., vol. 47, no. 6, p. 472, 2025.
  • [126] T. Ameh, M. Gibb, D. Stevens, S. H. Pradhan, E. Braswell, and C. M. Sayes, “Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells,” Nanomaterials, vol. 12, no. 14, p. 2402, 2022.
  • [127] K. Jomova, S. Y. Alomar, E. Nepovimova, K. Kuca, and M. Valko, “Heavy metals: toxicity and human health effects,” Arch. Toxicol., vol. 99, no. 1, pp. 153–209, 2025.
  • [128] T. Ameh and C. M. Sayes, “The potential exposure and hazards of copper nanoparticles: A review,” Environ. Toxicol. Pharmacol., vol. 71, p. 103220, 2019.
  • [129] K. Harini et al., “Nano-mediated strategies for metal ion–induced neurodegenerative disorders: focus on Alzheimer’s and Parkinson’s diseases,” Curr. Pharmacol. Reports, vol. 8, no. 6, pp. 450–463, 2022.
  • [130] H. W. Ejaz, W. Wang, and M. Lang, “Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches,” Int. J. Mol. Sci., vol. 21, no. 20, p. 7660, 2020.
  • [131] M. P. J. V. K. K. D. Vetchý, “Biological role of copper as an essential trace element in the human organism.,” Ces. a Slov. Farm. Cas. Ces. Farm. Spol. a Slov. Farm. Spol., vol. 67, no. 4, pp. 143–153, 2018.
  • [132] G. Naikoo et al., “An overview of copper nanoparticles: synthesis, characterisation and anticancer activity,” Curr. Pharm. Des., vol. 27, no. 43, pp. 4416–4432, 2021.
  • [133] M. Pohanka, “Copper and copper nanoparticles toxicity and their impact on basic functions in the body,” Bratisl. Lek. List., vol. 120, no. 6, pp. 397–409, 2019.
  • [134] I. Na and D. C. Kennedy, “Size-specific copper nanoparticle cytotoxicity varies between human cell lines,” Int. J. Mol. Sci., vol. 22, no. 4, p. 1548, 2021.
  • [135] I.-C. Lee et al., “Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats.,” Int. J. Nanomedicine, vol. 11, pp. 2883–2900, 2016, doi: 10.2147/IJN.S106346.
There are 135 citations in total.

Details

Primary Language English
Subjects Environmental Nanotechnology and Nanometrology, Nanochemistry, Nanomaterials
Journal Section Review
Authors

Hussein Elaibi 0000-0001-5306-6511

Farah Mutlag 0000-0001-5348-0739

Ebru Halvacı 0009-0003-2343-0046

Fatih Şen 0000-0001-9929-9556

Submission Date August 11, 2025
Acceptance Date September 16, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Issue: 014

Cite

APA Elaibi, H., Mutlag, F., Halvacı, E., Şen, F. (2025). Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine. Journal of Scientific Reports-B(014), 24-40.
AMA Elaibi H, Mutlag F, Halvacı E, Şen F. Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine. Journal of Scientific Reports-B. December 2025;(014):24-40.
Chicago Elaibi, Hussein, Farah Mutlag, Ebru Halvacı, and Fatih Şen. “Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine”. Journal of Scientific Reports-B, no. 014 (December 2025): 24-40.
EndNote Elaibi H, Mutlag F, Halvacı E, Şen F (December 1, 2025) Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine. Journal of Scientific Reports-B 014 24–40.
IEEE H. Elaibi, F. Mutlag, E. Halvacı, and F. Şen, “Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine”, Journal of Scientific Reports-B, no. 014, pp. 24–40, December2025.
ISNAD Elaibi, Hussein et al. “Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine”. Journal of Scientific Reports-B 014 (December2025), 24-40.
JAMA Elaibi H, Mutlag F, Halvacı E, Şen F. Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine. Journal of Scientific Reports-B. 2025;:24–40.
MLA Elaibi, Hussein et al. “Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine”. Journal of Scientific Reports-B, no. 014, 2025, pp. 24-40.
Vancouver Elaibi H, Mutlag F, Halvacı E, Şen F. Copper Nanoparticles: Synthesis, Characterization, and Their Applications in Medicine. Journal of Scientific Reports-B. 2025(014):24-40.