Research Article
BibTex RIS Cite

Construction of complete (k,3)-Arcs containing menelaus 6-Figures in PG(2,4) using a secant-based algorithm

Year 2025, Issue: 014, 16 - 23, 30.12.2025

Abstract

This study investigates complete (k,3)-arcs containing a Menelaus 6-figure in the projective plane PG(2,4). We developed and implemented a computational algorithm in C# to construct and classify complete arcs through a detailed analysis of the secant line distributions associated with the Menelaus 6-figure. The algorithm identifies seven points outside the Menelaus 6-figure, which are classified into two categories based on their incidence with 0-secant, 1-secant, and 2-secant lines. By analyzing the extension of this configuration, one unique complete (7,3)-arc and eight distinct complete (9,3)-arcs were identified, all of which contain the Menelaus 6-figure.

References

  • [1] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Springer Monographs in Mathematics. Springer- Verlag London, 2016.
  • [2] A. Bayar, Z. Akca, E. Altintas, S. Ekmekci, “On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9,” New Trend Math. Sci., vol. 4, no.4, pp. 266-266, 2016, doi: 10.20852/ntmsci.2016.113
  • [3] S. Ekmekci, A. Bayar, E. Altintas, Z. Akca, “On the Complete (k,2)- Arcs of the Hall Plane of Order 9,” IJARCSSE, vol. 6, no.10, pp. 282-288, 2016, ISSN: 2277 128X.
  • [4] E. Altıntaş Kahriman and A. Bayar, “Investigating Incomplete (7,3)-Arcs and Their Extensions in PG(2,5): A Study On Secants And Complete Quadrangles,” 5. Bilsel International World Scientific And Research Congress, İstanbul, Türkiye, 05-06 October 2024, pp.536-545.
  • [5] E. Altıntaş Kahriman and A. Bayar, “An Algorithm For Constructing (k,2)-Arcs Containing Triangle And Quadrangle in PG(2,4),” 5. Bilsel International Gordion Scientific Researches Congress, Ankara/ Türkiye, 08-09 December, 2024, pp.987-997.
  • [6] V. Danos and L. Regnier, “The structure of multiplicatives,” Arch Math Logic, vol. 28, 1989, pp. 181-203, doi: 10.1007/BF01622878
  • [7] J. Benitez, “A unified proof of Ceva and Menelaus’ theorems using projective geometry,” JGG, vol. 11, no. 1, pp. 39–44, 2007. ISSN 1433-8157
  • [8] V. Nicolae, “On The Ceva’s And Menelaus’s Theorems.” Rom. J. Phys., [S.l.], vol. 5, no. 2, pp. 43-50, 2020. ISSN 2537-5229.
  • [9] B.K. Funk, Ceva and Menelaus in projective geometry, University of Louisuille, 42 p, 2008.
  • [10] S. Çiftçi, R. Kaya, and J.C. Ferrar, “On Menelaus and Ceva 6-figures in Moufang projective planes,” Geom. Dedicata, vol. 19, no. 3, pp. 295–296, 1985.
  • [11] A. Bayar and S. Ekmekçi, “On the Menelaus and Ceva 6-figures in the fibered projective planes,” Abstr. Appl. Anal.,pp. 1-5, 2014, doi: 10.1155/2014/803173
  • [12] Z. Akça, A. Bayar, and S. Ekmekçi, “On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69 no.1, pp. 891-899, 2020. doi: 10.31801/cfsuasmas.567753
  • [13] A. Bayar and E. Altıntaş Kahriman, “Complete (11,3)-Arcs Constructed from Menelaus Configurations in PG(2,5) via Secant-Based Analysis,” Pioneer Research in Natural Science and Mathematics, All Sciences Academy, 2025, pp. 5-20.
  • [14] E. Altıntaş Kahriman and A. Bayar, “Complete (10,3)-Arcs Constructed from Menelaus Configurations in PG(2,5): A Secant-Based Approach,” Pioneer Research in Natural Science and Mathematics, All Sciences Academy, 2025, pp. 21-37.
  • [15] J.W.P. Hirschfeld and J.F. Voloch, “Group-arcs of prime order on cubic curves,” Finite Geometry and Combinatorics, vol. 191, pp. 177-185, 2015.
  • [16] J.W.P. Hirschfeld and E.V.D Pichanick, “Bounded for arcs of arbitrary degree in finite Desarguesian Planes,” J Comb Des, vol. 24, no. 4, pp. 184-196, 2016.
  • [17] S. Ekmekci, A. Bayar, Z. Akca, “On The Projective Planes In Projective Space PG(4,4),” JIST, vol. 38, no. 3, pp. 519-524, 2022.

PG(2,4) Düzleminde Menelaus 6-figür İçeren Tam (k,3)-Arkların Sekant-Tabanlı Bir Algoritma ile Oluşturulması

Year 2025, Issue: 014, 16 - 23, 30.12.2025

Abstract

Bu çalışma, projektif düzlem PG(2,4)’te Menelaus 6-figürünü içeren tam (k,3)-arkları incelemektedir. C# dilinde geliştirilen ve uygulanan hesaplamalı bir algoritma aracılığıyla, Menelaus 6-figüre ait sekant doğru dağılımlarının ayrıntılı analizi yapılarak tam arkların inşası ve sınıflandırılması gerçekleştirilmiştir. Algoritma, Menelaus 6-figürün dışında bulunan yedi noktayı belirlemekte ve bu noktaları 0-sekant, 1-sekant ve 2-sekant doğrularıyla ilişkilerine göre iki ayrı kategoriye ayırmaktadır. Bu konfigürasyonun genişlemesi incelendiğinde, Menelaus 6-figürü içeren bir adet özgün tam (7,3)-ark ve sekiz farklı tam (9,3)-ark tespit edilmiştir.

References

  • [1] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Springer Monographs in Mathematics. Springer- Verlag London, 2016.
  • [2] A. Bayar, Z. Akca, E. Altintas, S. Ekmekci, “On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9,” New Trend Math. Sci., vol. 4, no.4, pp. 266-266, 2016, doi: 10.20852/ntmsci.2016.113
  • [3] S. Ekmekci, A. Bayar, E. Altintas, Z. Akca, “On the Complete (k,2)- Arcs of the Hall Plane of Order 9,” IJARCSSE, vol. 6, no.10, pp. 282-288, 2016, ISSN: 2277 128X.
  • [4] E. Altıntaş Kahriman and A. Bayar, “Investigating Incomplete (7,3)-Arcs and Their Extensions in PG(2,5): A Study On Secants And Complete Quadrangles,” 5. Bilsel International World Scientific And Research Congress, İstanbul, Türkiye, 05-06 October 2024, pp.536-545.
  • [5] E. Altıntaş Kahriman and A. Bayar, “An Algorithm For Constructing (k,2)-Arcs Containing Triangle And Quadrangle in PG(2,4),” 5. Bilsel International Gordion Scientific Researches Congress, Ankara/ Türkiye, 08-09 December, 2024, pp.987-997.
  • [6] V. Danos and L. Regnier, “The structure of multiplicatives,” Arch Math Logic, vol. 28, 1989, pp. 181-203, doi: 10.1007/BF01622878
  • [7] J. Benitez, “A unified proof of Ceva and Menelaus’ theorems using projective geometry,” JGG, vol. 11, no. 1, pp. 39–44, 2007. ISSN 1433-8157
  • [8] V. Nicolae, “On The Ceva’s And Menelaus’s Theorems.” Rom. J. Phys., [S.l.], vol. 5, no. 2, pp. 43-50, 2020. ISSN 2537-5229.
  • [9] B.K. Funk, Ceva and Menelaus in projective geometry, University of Louisuille, 42 p, 2008.
  • [10] S. Çiftçi, R. Kaya, and J.C. Ferrar, “On Menelaus and Ceva 6-figures in Moufang projective planes,” Geom. Dedicata, vol. 19, no. 3, pp. 295–296, 1985.
  • [11] A. Bayar and S. Ekmekçi, “On the Menelaus and Ceva 6-figures in the fibered projective planes,” Abstr. Appl. Anal.,pp. 1-5, 2014, doi: 10.1155/2014/803173
  • [12] Z. Akça, A. Bayar, and S. Ekmekçi, “On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69 no.1, pp. 891-899, 2020. doi: 10.31801/cfsuasmas.567753
  • [13] A. Bayar and E. Altıntaş Kahriman, “Complete (11,3)-Arcs Constructed from Menelaus Configurations in PG(2,5) via Secant-Based Analysis,” Pioneer Research in Natural Science and Mathematics, All Sciences Academy, 2025, pp. 5-20.
  • [14] E. Altıntaş Kahriman and A. Bayar, “Complete (10,3)-Arcs Constructed from Menelaus Configurations in PG(2,5): A Secant-Based Approach,” Pioneer Research in Natural Science and Mathematics, All Sciences Academy, 2025, pp. 21-37.
  • [15] J.W.P. Hirschfeld and J.F. Voloch, “Group-arcs of prime order on cubic curves,” Finite Geometry and Combinatorics, vol. 191, pp. 177-185, 2015.
  • [16] J.W.P. Hirschfeld and E.V.D Pichanick, “Bounded for arcs of arbitrary degree in finite Desarguesian Planes,” J Comb Des, vol. 24, no. 4, pp. 184-196, 2016.
  • [17] S. Ekmekci, A. Bayar, Z. Akca, “On The Projective Planes In Projective Space PG(4,4),” JIST, vol. 38, no. 3, pp. 519-524, 2022.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Ayşe Bayar 0000-0002-2210-5423

Elif Altıntaş Kahriman 0000-0002-3454-0326

Submission Date August 22, 2025
Acceptance Date October 17, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Issue: 014

Cite

APA Bayar, A., & Altıntaş Kahriman, E. (2025). Construction of complete (k,3)-Arcs containing menelaus 6-Figures in PG(2,4) using a secant-based algorithm. Journal of Scientific Reports-B(014), 16-23.
AMA Bayar A, Altıntaş Kahriman E. Construction of complete (k,3)-Arcs containing menelaus 6-Figures in PG(2,4) using a secant-based algorithm. Journal of Scientific Reports-B. December 2025;(014):16-23.
Chicago Bayar, Ayşe, and Elif Altıntaş Kahriman. “Construction of Complete (k,3)-Arcs Containing Menelaus 6-Figures in PG(2,4) Using a Secant-Based Algorithm”. Journal of Scientific Reports-B, no. 014 (December 2025): 16-23.
EndNote Bayar A, Altıntaş Kahriman E (December 1, 2025) Construction of complete (k,3)-Arcs containing menelaus 6-Figures in PG(2,4) using a secant-based algorithm. Journal of Scientific Reports-B 014 16–23.
IEEE A. Bayar and E. Altıntaş Kahriman, “Construction of complete (k,3)-Arcs containing menelaus 6-Figures in PG(2,4) using a secant-based algorithm”, Journal of Scientific Reports-B, no. 014, pp. 16–23, December2025.
ISNAD Bayar, Ayşe - Altıntaş Kahriman, Elif. “Construction of Complete (k,3)-Arcs Containing Menelaus 6-Figures in PG(2,4) Using a Secant-Based Algorithm”. Journal of Scientific Reports-B 014 (December2025), 16-23.
JAMA Bayar A, Altıntaş Kahriman E. Construction of complete (k,3)-Arcs containing menelaus 6-Figures in PG(2,4) using a secant-based algorithm. Journal of Scientific Reports-B. 2025;:16–23.
MLA Bayar, Ayşe and Elif Altıntaş Kahriman. “Construction of Complete (k,3)-Arcs Containing Menelaus 6-Figures in PG(2,4) Using a Secant-Based Algorithm”. Journal of Scientific Reports-B, no. 014, 2025, pp. 16-23.
Vancouver Bayar A, Altıntaş Kahriman E. Construction of complete (k,3)-Arcs containing menelaus 6-Figures in PG(2,4) using a secant-based algorithm. Journal of Scientific Reports-B. 2025(014):16-23.