Research Article
BibTex RIS Cite

AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES

Year 2021, Issue: 003, 13 - 24, 30.06.2021

Abstract

Augmented reality (AR) is, relatively, one of the newest techniques in visualization technologies, which began to be developed in the 1990s. AR can be expressed as positioning models in natural life environments by taking them out of the computer. A well-known and common approach is modeling in the computer environment and making applications. There are various software developed for this purpose. In augmented reality, it is possible to create these models in the same space with life, participate in these models, and intervene. The other connected issue is the excellent value of 3D visualization for the earth sciences because seeing provides a better understanding. In this study, augmented reality applications were implemented using photogrammetric models prepared for quarries and open pit and underground mines located in different world regions to enhance the visualization perception and interaction. Spatial and dimensional unity, an advanced level, and quality in visualization were provided for the models of quarries and mines with the mobile application technique. The applications also contribute to and are samples of the digital transformation concept.

Thanks

The author acknowledges the photogrammetric model developers for sharing their valuable works [28-31].

References

  • [1] Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers and Education, 57(3), 1893-1906
  • [2] Kesim, M. & Özarslan, Y. (2012). Augmented reality in education: current technologies and the potential for education. Procedia - Social and Behavioral Sciences, 47, 297-302.
  • [3] Zhou, Z., Cheok, A.D., Pan, J., & Li, Y. (2004). Magic story cube: An interactive tangible interface for storytelling. Proceedings of the 2004 ACM SIGCHI International Conference on Advances in computer entertainment technology, 364-365. DOI: 10.1145/1067343.1067404.
  • [4] Cheng, K.H. and Tsai, C.C. (2012). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22, 449-462. DOI: 10.1007/s10956-012-9405-9
  • [5] Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., and Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers and Education, 57 (3), 1893-1906
  • [6] Rice, R. (2009). The augmented reality hype cycle. http://www.sprxmobile.com/the-augmented-reality-hype-cycle /2014.
  • [7] Wang, X., Kim, M.J., Love, P.E.D., and Kang, S.C. (2013). Augmented Reality in built environment: Classification and implications for future research. Automation in Construction, 32, 1–13.
  • [8] Yılmaz, M.R., Göktaş, Y. (2018). Using Augmented Reality Technology in Education. Journal of Çukurova University Education Faculty, 47(2), 510-537.
  • [9] Azuma, R.T., (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385.
  • [10] Wang, D., He, L., & Dou, K. (2013). StoryCube: supporting children’s storytelling with a tangible tool. The Journal of Supercomputing. DOI: 10.1007/s11227-012-0855.
  • [11] Wojciechowski, R., Walczak, K., White, M., & Cellary, W. (2004). Building virtual and augmented reality museum exhibitions. Proceedings of 9th international conference on 3D web technology (Web3D 2004), 135-144.
  • [12] Kirner, T.G., Reis, F.M.V., & Kirner, C. (2012). Development of an interactive book with Augmented Reality for teaching and learning geometric shapes. Information Systems and Technologies (CISTI), 1-6.
  • [13] Pine, J. 2018. 10 Real Use Cases for Augmented Reality AR is set to have a big impact on major industries. https://www.inc.com/james-paine/10-real-use-cases-for-augmented-reality.html
  • [14] Stothard, P.M., Squelch, A.P., Van Wyk, E.A., Schofield, D., Fowle, K., Caris, C., Kizil, M., & Schmid, M. (2008). Taxonomy of Interactive Computer-based Visualisation Systems and Content for the Mining Industry - Part 1. Proceedings of the AUSIMM Future Mining Conference 2008, Sydney.
  • [15] Van Krevelen, D.W.F. & Poelman, R. (2010). A Survey of Augmented Reality Technologies, Applications and Limitations. The International Journal of Virtual Reality, 9(2):1-20.
  • [16] American Society for Photogrammetry and Remote Sensing (2019). What is ASPRS?. Available online at: https://www.asprs.org/organization/what-is-asprs.html (accessed November 27, 2019)
  • [17] Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf. Process. Landforms 38, 421–430. DOI: 10.1002/esp.3366
  • [18] Abbaszadeh, S., and Rastiveis, H. (2017). “A comparison of close-range photogrammetry using a non-professional camerawith field surveying for volume estimation,” in ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4, (Heipke: International Society for Photogrammetry and Remote Sensing), 1–4. DOI: 10.5194/isprs-archives-XLII-4-W4-1-2017
  • [19] Vangorp, P., Laurijssen, J., and Dutré, P. (2007). The influence of shape on the perception of material reflectance. ACM Trans. Graphics 26:77. DOI: 10.1145/1239451.1239528
  • [20] Ahn, J., Ahn, E., Min, S., Choi, H., Kim, H., and Kim, G. J. (2019). “Size perception of augmented objects by different AR displays,” in HCI International 2019—Posters, Vol. 1033, ed. C. Stephanidis (London: Intech Open), 337–344. DOI: 10.1007/978-3-030-23528-4_46
  • [21] Smallman, H. S., and St John, M. (2005). Naive realism: misplaced faith in realistic displays. Ergon. Design Q. Hum. Fact. Appl. 13, 6–13. DOI: 10.1177/106480460501300303
  • [22] Kunz, B. R., Wouters, L., Smith, D., Thompson, W. B., and Creem-Regehr, S. H. (2009). Revisiting the effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal reports and blind walking. Atten. Percept. Psychophys. 71, 1284–1293. DOI: 10.3758/APP.71.6.1284
  • [23] El Jamiy, F., and Marsh, R. (2019). Survey on depth perception in head mounted displays: distance estimation in virtual reality, augmented reality, and mixed reality. IET Image Process. 13, 707–712. DOI: 10.1049/iet-ipr.2018.5920
  • [24] Unity 3D (2022). Unity Technologies Inc. https://unity.com
  • [25] SPH Engineering, Riga, Latvia (2022). Retrieved from https://www.ugcs.com/news-entry/announcing-release-of-ugcs-update-with-added-search-patterns-for-sar-operations
  • [26] PTC Inc. https://www.ptc.com/en/products/vuforia
  • [27] Sketchfab Inc. https://sketchfab.com
  • [28] Outcropwizard, Bonn, Germany (2022). Grube Theresia, Morshausen, Germany. Retrieved from https://sketchfab.com/3d-models/ppc-kgale-2016-09-08-677a883d45ea48fbb974a0470f98a2ed
  • [29] Aerial-Craft (2022). Rawang Mine Quarry, Malaysia. Retrieved from https://sketchfab.com/3d-models/rawang-quarry-2a-11jan17-malaysia-f3eae47abe694f36a9a98578315acc1e
  • [30] Premier Mapping, Cullinan, South Africa. Lyttleton Quarry, New Zealand. Retrieved from https://sketchfab.com/3d-models/2016-09-01-lyttelton-05612c2bc3844d249b905a21f05aa594
  • [31] Premier Mapping, Cullinan, South Africa. PPC KGale Quarry, Botswana, Retrieved from https://sketchfab.com/3d-models/ppc-kgale-2016-09-08-677a883d45ea48fbb974a0470f98a2ed
  • [32] Gül, Y (2019). Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Jeoloji Bülteni. Cilt 62, Sayı 1, 99 - 112, 01.01.2019. https://doi.org/10.25288/tjb.519506.
  • [33] Unreal Engine (2022). Epic Games Inc. https://www.unrealengine.com/en-US/

MADEN VE TAŞ OCAKLARININ GÖRÜNTÜLENMESİNDE ARTIRILMIŞ GERÇEKLİK

Year 2021, Issue: 003, 13 - 24, 30.06.2021

Abstract

Artırılmış gerçeklik, 1990’larda geliştirilmeye başlanan, görüntüleme teknolojileri içinde göreceli olarak en genç tekniklerden biridir. Görüntülerin bilgisayardan çıkarak hayatın içinde konumlandırılması olarak ifade etmek mümkündür. Bilgisayar ortamında modelleme ve bunların üzerinden uygulamalar yapmak yaygın bir yaklaşımdır. Bu amaçla geliştirilmiş dünya çapında yazılımlar mevcuttur. Artırılmış gerçeklikte, bu modellerin hayatla eş mekânda oluşturulması, bu modellerin içinde yer almak ve müdahale etmek mümkündür. Bir diğer husus, yer bilimlerinde 3B görüntülemenin mühendislik değeri yüksektir. Zira görmek daha iyi anlamaya katkı sağlamaktadır. Bu çalışmada, daha geliştirilmiş bir görüntüleme seviyesi elde etmek için, dünyanın değişik bölgelerindeki gerçek taş ocağı, açık ve yeraltı maden ocakları için geliştirilen fotogrametrik modeller kullanılarak artırılmış gerçeklik uygulamaları yapılmıştır. Mobil uygulama tekniği ile taş ocağı ve maden ocaklarının görüntülerinde mekânsal ve boyutsal birliktelik, daha üst düzey ve kalitede bir görüntüleme imkânı sağlanmıştır. Uygulamalar, dijital dönüşüm kavramına katkıda bulunmakta ve örnek teşkil etmektedir.

References

  • [1] Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers and Education, 57(3), 1893-1906
  • [2] Kesim, M. & Özarslan, Y. (2012). Augmented reality in education: current technologies and the potential for education. Procedia - Social and Behavioral Sciences, 47, 297-302.
  • [3] Zhou, Z., Cheok, A.D., Pan, J., & Li, Y. (2004). Magic story cube: An interactive tangible interface for storytelling. Proceedings of the 2004 ACM SIGCHI International Conference on Advances in computer entertainment technology, 364-365. DOI: 10.1145/1067343.1067404.
  • [4] Cheng, K.H. and Tsai, C.C. (2012). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22, 449-462. DOI: 10.1007/s10956-012-9405-9
  • [5] Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., and Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers and Education, 57 (3), 1893-1906
  • [6] Rice, R. (2009). The augmented reality hype cycle. http://www.sprxmobile.com/the-augmented-reality-hype-cycle /2014.
  • [7] Wang, X., Kim, M.J., Love, P.E.D., and Kang, S.C. (2013). Augmented Reality in built environment: Classification and implications for future research. Automation in Construction, 32, 1–13.
  • [8] Yılmaz, M.R., Göktaş, Y. (2018). Using Augmented Reality Technology in Education. Journal of Çukurova University Education Faculty, 47(2), 510-537.
  • [9] Azuma, R.T., (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385.
  • [10] Wang, D., He, L., & Dou, K. (2013). StoryCube: supporting children’s storytelling with a tangible tool. The Journal of Supercomputing. DOI: 10.1007/s11227-012-0855.
  • [11] Wojciechowski, R., Walczak, K., White, M., & Cellary, W. (2004). Building virtual and augmented reality museum exhibitions. Proceedings of 9th international conference on 3D web technology (Web3D 2004), 135-144.
  • [12] Kirner, T.G., Reis, F.M.V., & Kirner, C. (2012). Development of an interactive book with Augmented Reality for teaching and learning geometric shapes. Information Systems and Technologies (CISTI), 1-6.
  • [13] Pine, J. 2018. 10 Real Use Cases for Augmented Reality AR is set to have a big impact on major industries. https://www.inc.com/james-paine/10-real-use-cases-for-augmented-reality.html
  • [14] Stothard, P.M., Squelch, A.P., Van Wyk, E.A., Schofield, D., Fowle, K., Caris, C., Kizil, M., & Schmid, M. (2008). Taxonomy of Interactive Computer-based Visualisation Systems and Content for the Mining Industry - Part 1. Proceedings of the AUSIMM Future Mining Conference 2008, Sydney.
  • [15] Van Krevelen, D.W.F. & Poelman, R. (2010). A Survey of Augmented Reality Technologies, Applications and Limitations. The International Journal of Virtual Reality, 9(2):1-20.
  • [16] American Society for Photogrammetry and Remote Sensing (2019). What is ASPRS?. Available online at: https://www.asprs.org/organization/what-is-asprs.html (accessed November 27, 2019)
  • [17] Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf. Process. Landforms 38, 421–430. DOI: 10.1002/esp.3366
  • [18] Abbaszadeh, S., and Rastiveis, H. (2017). “A comparison of close-range photogrammetry using a non-professional camerawith field surveying for volume estimation,” in ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4, (Heipke: International Society for Photogrammetry and Remote Sensing), 1–4. DOI: 10.5194/isprs-archives-XLII-4-W4-1-2017
  • [19] Vangorp, P., Laurijssen, J., and Dutré, P. (2007). The influence of shape on the perception of material reflectance. ACM Trans. Graphics 26:77. DOI: 10.1145/1239451.1239528
  • [20] Ahn, J., Ahn, E., Min, S., Choi, H., Kim, H., and Kim, G. J. (2019). “Size perception of augmented objects by different AR displays,” in HCI International 2019—Posters, Vol. 1033, ed. C. Stephanidis (London: Intech Open), 337–344. DOI: 10.1007/978-3-030-23528-4_46
  • [21] Smallman, H. S., and St John, M. (2005). Naive realism: misplaced faith in realistic displays. Ergon. Design Q. Hum. Fact. Appl. 13, 6–13. DOI: 10.1177/106480460501300303
  • [22] Kunz, B. R., Wouters, L., Smith, D., Thompson, W. B., and Creem-Regehr, S. H. (2009). Revisiting the effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal reports and blind walking. Atten. Percept. Psychophys. 71, 1284–1293. DOI: 10.3758/APP.71.6.1284
  • [23] El Jamiy, F., and Marsh, R. (2019). Survey on depth perception in head mounted displays: distance estimation in virtual reality, augmented reality, and mixed reality. IET Image Process. 13, 707–712. DOI: 10.1049/iet-ipr.2018.5920
  • [24] Unity 3D (2022). Unity Technologies Inc. https://unity.com
  • [25] SPH Engineering, Riga, Latvia (2022). Retrieved from https://www.ugcs.com/news-entry/announcing-release-of-ugcs-update-with-added-search-patterns-for-sar-operations
  • [26] PTC Inc. https://www.ptc.com/en/products/vuforia
  • [27] Sketchfab Inc. https://sketchfab.com
  • [28] Outcropwizard, Bonn, Germany (2022). Grube Theresia, Morshausen, Germany. Retrieved from https://sketchfab.com/3d-models/ppc-kgale-2016-09-08-677a883d45ea48fbb974a0470f98a2ed
  • [29] Aerial-Craft (2022). Rawang Mine Quarry, Malaysia. Retrieved from https://sketchfab.com/3d-models/rawang-quarry-2a-11jan17-malaysia-f3eae47abe694f36a9a98578315acc1e
  • [30] Premier Mapping, Cullinan, South Africa. Lyttleton Quarry, New Zealand. Retrieved from https://sketchfab.com/3d-models/2016-09-01-lyttelton-05612c2bc3844d249b905a21f05aa594
  • [31] Premier Mapping, Cullinan, South Africa. PPC KGale Quarry, Botswana, Retrieved from https://sketchfab.com/3d-models/ppc-kgale-2016-09-08-677a883d45ea48fbb974a0470f98a2ed
  • [32] Gül, Y (2019). Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Jeoloji Bülteni. Cilt 62, Sayı 1, 99 - 112, 01.01.2019. https://doi.org/10.25288/tjb.519506.
  • [33] Unreal Engine (2022). Epic Games Inc. https://www.unrealengine.com/en-US/
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Kaan Erarslan This is me 0000-0002-1875-4009

Publication Date June 30, 2021
Submission Date January 17, 2022
Published in Issue Year 2021 Issue: 003

Cite

APA Erarslan, K. (2021). AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES. Journal of Scientific Reports-B(003), 13-24.
AMA Erarslan K. AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES. JSR-B. June 2021;(003):13-24.
Chicago Erarslan, Kaan. “AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES”. Journal of Scientific Reports-B, no. 003 (June 2021): 13-24.
EndNote Erarslan K (June 1, 2021) AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES. Journal of Scientific Reports-B 003 13–24.
IEEE K. Erarslan, “AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES”, JSR-B, no. 003, pp. 13–24, June 2021.
ISNAD Erarslan, Kaan. “AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES”. Journal of Scientific Reports-B 003 (June 2021), 13-24.
JAMA Erarslan K. AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES. JSR-B. 2021;:13–24.
MLA Erarslan, Kaan. “AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES”. Journal of Scientific Reports-B, no. 003, 2021, pp. 13-24.
Vancouver Erarslan K. AUGMENTED REALITY APPLICATIONS ON QUARRIES AND MINES. JSR-B. 2021(003):13-24.