Review
BibTex RIS Cite

Small particles, big changes; synthesis, characterization of nanomaterials and an overview of their application areas

Year 2024, Issue: 009, 16 - 38, 30.04.2024

Abstract

In the age of advanced technology, nanomaterials, their chemical and physical properties, characterization methods and synthesis methods have become very interesting in the scientific world. Considering the size, shape, and synthesis conditions of nanomaterials, and physical structure, the related materials are synthesized at the nanoscale. Nanomaterials have electrical, magnetic, optical, mechanical, and catalytic properties superior to micro materials and have the potential to create new and advanced products. For this reason, nanomaterials are widely used in the healthcare sector, textile industry, automotive technology, energy systems, science, and education. In general, this review covers the synthesis of nanomaterials, characterization methods, and their approaches to application today. In particular, nanomaterials have been obtained from top to bottom or from bottom to top with different specific approaches, and the structures of nanomaterials have been elucidated by explaining the relevant characterization methods. Finally, by giving an overview of the applications of the synthesized and characterized materials in daily life, the study was completed with the achievements of the nanoscale world.

References

  • [1] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine,” Molecules, vol. 25, no. 1, p. 112, Dec. 2019, doi: 10.3390/molecules25010112.
  • [2] R. Darabi et al., “Biogenic Platinum-Based Bimetallic Nanoparticles: Synthesis, Characterization, Antimicrobial Activity And Hydrogen Evolution,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21270–21284, Jun. 2023, doi: 10.1016/j.ijhydene.2022.12.072.
  • [3] F. Karimi et al., “Efficient Green Photocatalyst of Silver Based Palladium Nanoparticles for Methyle Orange Photodegradation, Investigation of Lipid Peroxidation Inhibition, Antimicrobial, and Antioxidant Activity,” Food Chem. Toxicol., vol. 169, p. 113406, Nov. 2022, doi: 10.1016/j.fct.2022.113406.
  • [4] P. Köseoğlu and G. Mercan, “Biyoloji Öğretmen Adaylarının Nanoteknolojiye Yönelik Algıları,” Erzincan Üniversitesi Eğitim Fakültesi, vol. 20, no. 3, pp. 687–706, Dec. 2018, doi: 10.17556/erziefd.406187.
  • [5] N. Baig, I. Kammakakam, and W. Falath, “Nanomaterials: A Review Of Synthesis Methods, Properties, Recent Progress, And Challenges,” Mater. Adv., vol. 2, no. 6, pp. 1821–1871, 2021, doi: 10.1039/D0MA00807A.
  • [6] G. N. Kokila, C. Mallikarjunaswamy, and V. L. Ranganatha, “A Review On Synthesis And Applications Of Versatile Nanomaterials,” Inorg. Nano-Metal Chem., pp. 1–30, Jun. 2022, doi: 10.1080/24701556.2022.2081189.
  • [7] K. Arikan, H. Burhan, E. Sahin, and F. Sen, “A Sensitive, Fast, Selective, And Reusable Enzyme-Free Glucose Sensor Based On Monodisperse Auni Alloy Nanoparticles On Activated Carbon Support,” Chemosphere, vol. 291, p. 132718, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132718.
  • [8] H. Kumar et al., “Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications,” Int. J. Mol. Sci., vol. 21, no. 22, p. 8458, Nov. 2020, doi: 10.3390/ijms21228458.
  • [9] F. Muench, “Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts,” Catalysts, vol. 8, no. 12, p. 597, Dec. 2018, doi: 10.3390/catal8120597.
  • [10] H. Burhan et al., “Highly Efficient Carbon Hybrid Supported Catalysts Using Nano-Architecture As Anode Catalysts For Direct Methanol Fuel Cells,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6657–6665, 2023, doi: 10.1016/j.ijhydene.2021.12.141.
  • [11] J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and Applications of 3D Printing for Novel Materials,” Appl. Mater. Today, vol. 7, pp. 120–133, Jun. 2017, doi: 10.1016/j.apmt.2017.02.004.
  • [12] X. Liu and M. C. Hersam, “2D Materials for Quantum Information Science,” Nat. Rev. Mater., vol. 4, no. 10, pp. 669–684, Aug. 2019, doi: 10.1038/s41578-019-0136-x.
  • [13] A. M. Boies et al., “Agglomeration Dynamics of 1D Materials: Gas‐Phase Collision Rates of Nanotubes and Nanorods,” Small, vol. 15, no. 27, Jul. 2019, doi: 10.1002/smll.201900520.
  • [14] Z. Wang, T. Hu, R. Liang, and M. Wei, “Application of Zero-Dimensional Nanomaterials in Biosensing,” Front. Chem., vol. 8, Apr. 2020, doi: 10.3389/fchem.2020.00320.
  • [15] T. Gur, I. Meydan, H. Seckin, M. Bekmezci, and F. Sen, “Green Synthesis, Characterization and Bioactivity of Biogenic Zinc Oxide Nanoparticles,” Environ. Res., vol. 204, p. 111897, Mar. 2022, doi: 10.1016/j.envres.2021.111897.
  • [16] Y. Kocak et al., “Microwave-Assisted Fabrication of AgRuNi Trimetallic NPs with Their Antibacterial vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants,” Bionanoscience, Nov. 2023, doi: 10.1007/s12668-023-01237-4.
  • [17] Y. An et al., “Dealloying: An Effective Method for Scalable Fabrication of 0D, 1D, 2D, 3D Materials and Its Application in Energy Storage,” Nano Today, vol. 37, p. 101094, Apr. 2021, doi: 10.1016/j.nantod.2021.101094.
  • [18] R. Arenal and A. Lopez‐Bezanilla, “Boron Nitride Materials: An Overview From 0D to 3D Structures,” Wires Comput. Mol. Sci., vol. 5, no. 4, pp. 299–309, Jul. 2015, doi: 10.1002/wcms.1219.
  • [19] P. Bajpai, “Nanotechnology in Forest Industry,” vol. 2, no. December, p. 258, 2016.
  • [20] B. Şahin et al., “Cytotoxic Effects Of Platinum Nanoparticles Obtained From Pomegranate Extract By The Green Synthesis Method On The MCF-7 Cell Line,” Colloids Surfaces B Biointerfaces, vol. 163, pp. 119–124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [21] M. Kurtay, H. G. Göksu, Haydar, H. Burhan, M. I. Ahamed, and F. Şen, “Magnetic Nanomaterials for Lithium-ion Batteries,” in Magnetic Nanomaterials for Lithium-ion Batteries, 2020, pp. 123–147. doi: 10.21741/9781644900918-5.
  • [22] F. Şen, Nanomaterials for Direct Alcohol Fuel Cells: Characterization, Design, and Electrocatalysis. Elsevier, 2021. doi: 10.1016/B978-0-12-821713-9.09990-X.
  • [23] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green Synthesis And Characterization Of Camellia Sinensis Mediated Silver Nanoparticles For Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123037.
  • [24] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, and F. Sen, “Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane,” J. Colloid Interface Sci., vol. 526, pp. 480–486, Sep. 2018, doi: 10.1016/j.jcis.2018.05.021.
  • [25] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • [26] P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications,” Journal of Drug Delivery Science and Technology, vol. 53. p. 101174, Oct. 2019. doi: 10.1016/j.jddst.2019.101174.
  • [27] I. Meydan et al., “Chitosan/PVA Supported Silver Nanoparticles for Azo Dyes Removal: Fabrication, Characterization, and Assessment of Antioxidant Activity,” Environ. Sci. Adv., 2024, doi: 10.1039/D3VA00224A.
  • [28] Y. Li et al., “Developments of Advanced Electrospinning Techniques: A Critical Review,” Adv. Mater. Technol., vol. 6, no. 11, Nov. 2021, doi: 10.1002/admt.202100410.
  • [29] M. S. Islam, B. C. Ang, A. Andriyana, and A. M. Afifi, “A Review On Fabrication Of Nanofibers Via Electrospinning And Their Applications,” SN Appl. Sci., vol. 1, no. 10, p. 1248, Oct. 2019, doi: 10.1007/s42452-019-1288-4.
  • [30] J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, Apr. 2019, doi: 10.1021/acs.chemrev.8b00593.
  • [31] K. Zhao, W. Wang, Y. Yang, K. Wang, and D.-G. Yu, “From Taylor Cone To Solid Nanofiber İn Tri-Axial Electrospinning: Size Relationships,” Results Phys., vol. 15, p. 102770, Dec. 2019, doi: 10.1016/j.rinp.2019.102770.
  • [32] X. Zhang, L. Xie, X. Wang, Z. Shao, and B. Kong, “Electrospinning Super-Assembly Of Ultrathin Fibers From Single- To Multi-Taylor Cone Sites,” Appl. Mater. Today, vol. 26, p. 101272, Mar. 2022, doi: 10.1016/j.apmt.2021.101272.
  • [33] J. Xiong et al., “Mass Production Of High-Quality Nanofibers Via Constructing Pre-Taylor Cones With High Curvature On Needleless Electrospinning,” Mater. Des., vol. 197, p. 109247, Jan. 2021, doi: 10.1016/j.matdes.2020.109247.
  • [34] H. S. SalehHudin, E. N. Mohamad, W. N. L. Mahadi, and A. Muhammad Afifi, “Multiple-Jet Electrospinning Methods For Nanofiber Processing: A Review,” Mater. Manuf. Process., vol. 33, no. 5, pp. 479–498, Apr. 2018, doi: 10.1080/10426914.2017.1388523.
  • [35] V. Beachley and X. Wen, “Effect Of Electrospinning Parameters On The Nanofiber Diameter And Length,” Mater. Sci. Eng. C, vol. 29, no. 3, pp. 663–668, Apr. 2009, doi: 10.1016/j.msec.2008.10.037.
  • [36] D. F. Fernandes, C. Majidi, and M. Tavakoli, “Digitally Printed Stretchable Electronics: A Review,” J. Mater. Chem. C, vol. 7, no. 45, pp. 14035–14068, 2019, doi: 10.1039/C9TC04246F.
  • [37] R. Bayat, H. Burhan, M. Bekmezci, E. S. Isgin, M. Akin, and F. Sen, “Synthesis And Characterization Of Lignin-Based Carbon Nanofiber Supported Platinum–Ruthenium Nanoparticles Obtained From Wood Sawdust And Applications İn Alcohol Fuel Cells,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21128–21138, Jun. 2023, doi: 10.1016/j.ijhydene.2022.10.237.
  • [38] W. E. Teo and S. Ramakrishna, “A Review On Electrospinning Design And Nanofibre Assemblies,” Nanotechnology, vol. 17, no. 14, pp. R89–R106, Jul. 2006, doi: 10.1088/0957-4484/17/14/R01.
  • [39] X. Qin and S. Wang, “Filtration Properties Of Electrospinning Nanofibers,” J. Appl. Polym. Sci., vol. 102, no. 2, pp. 1285–1290, Oct. 2006, doi: 10.1002/app.24361.
  • [40] F. Fadil, N. D. N. Affandi, M. I. Misnon, N. N. Bonnia, A. M. Harun, and M. K. Alam, “Review on Electrospun Nanofiber-Applied Products,” Polymers (Basel)., vol. 13, no. 13, p. 2087, Jun. 2021, doi: 10.3390/polym13132087.
  • [41] Y. Liu et al., “A Review On Recent Advances İn Application Of Electrospun Nanofiber Materials As Biosensors,” Curr. Opin. Biomed. Eng., vol. 13, pp. 174–189, Mar. 2020, doi: 10.1016/j.cobme.2020.02.001.
  • [42] H. Schift and A. Kristensen, “Nanoimprint Lithography,” 2017, pp. 113–142. doi: 10.1007/978-3-662-54357-3_5.
  • [43] H. Schift, “Nanoimprint Lithography: An Old Story in Modern Times?,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 26, no. 2, pp. 458–480, Mar. 2008, doi: 10.1116/1.2890972.
  • [44] L. M. Cox, A. M. Martinez, A. K. Blevins, N. Sowan, Y. Ding, and C. N. Bowman, “Nanoimprint Lithography: Emergent Materials and Methods Of Actuation,” Nano Today, vol. 31, p. 100838, Apr. 2020, doi: 10.1016/j.nantod.2019.100838.
  • [45] B. Wu and A. Kumar, “Extreme Ultraviolet Lithography: A Review,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 25, no. 6, pp. 1743–1761, Nov. 2007, doi: 10.1116/1.2794048.
  • [46] Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci., vol. 28, no. 1, pp. 153–184, Aug. 1998, doi: 10.1146/annurev.matsci.28.1.153.
  • [47] M. Tulinski and M. Jurczyk, “Nanomaterials Synthesis Methods,” in Metrology and Standardization of Nanotechnology, Wiley, 2017, pp. 75–98. doi: 10.1002/9783527800308.ch4.
  • [48] F. Meierhofer, L. Mädler, and U. Fritsching, “Nanoparticle evolution in flame spray pyrolysis—Process design via experimental and computational analysis,” AICHE J., vol. 66, no. 2, Feb. 2020, doi: 10.1002/aic.16885.
  • [49] Z.-S. Wu et al., “Synthesis Of Graphene Sheets With High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, vol. 3, no. 2, pp. 411–417, Feb. 2009, doi: 10.1021/nn900020u.
  • [50] D. Zhang et al., “Controllable Synthesis Of Carbon Nanomaterials By Direct Current Arc Discharge From The Inner Wall Of The Chamber,” Carbon N. Y., vol. 142, pp. 278–284, Feb. 2019, doi: 10.1016/j.carbon.2018.10.062.
  • [51] F. Liang, M. Tanaka, S. Choi, and T. Watanabe, “Formation Of Different Arc Anode Attachment Modes And Their Effect On Temperature Fluctuation For Carbon Nanomaterial Production In DC Arc Discharge,” Carbon N. Y., vol. 117, pp. 100–111, Jun. 2017, doi: 10.1016/j.carbon.2017.02.084.
  • [52] M. Akin, M. Bekmezci, R. Bayat, I. Isik, and F. Sen, “Ultralight Covalent Organic Frame Graphene Aerogels Modified Platinum Magnetite Nanostructure for Direct Methanol Fuel Cell,” Fuel, vol. 357, p. 129771, Feb. 2024, doi: 10.1016/j.fuel.2023.129771.
  • [53] B. Demirkan et al., “Palladium Supported on Polypyrrole/Reduced Graphene Oxide Nanoparticles for Simultaneous Biosensing Application of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • [54] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco Friendly Hydrogenation of Aromatic Aldehyde Compounds By Tandem Dehydrogenation of Dimethylamine Borane in the Presence of a Reduced Graphene Oxide Furnished Platinum Nanocatalyst,” Catal. Sci. Technol., vol. 6, no. 7, pp. 2318–2324, 2016, doi: 10.1039/C5CY01462J.
  • [55] N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, “Synthesis Of Single Wall Carbon Nanohorns By Arc Discharge In Air and Their Formation Mechanism,” Carbon N. Y., vol. 48, no. 5, pp. 1580–1585, Apr. 2010, doi: 10.1016/j.carbon.2009.12.055.
  • [56] J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications,” ChemPhysChem, vol. 18, no. 9, pp. 986–1006, May 2017, doi: 10.1002/cphc.201601220.
  • [57] C. A. Charitidis, P. Georgiou, M. A. Koklioti, A.-F. Trompeta, and V. Markakis, “Manufacturing Nanomaterials: From Research To İndustry,” Manuf. Rev., vol. 1, p. 11, Sep. 2014, doi: 10.1051/mfreview/2014009.
  • [58] M. Kumar and Y. Ando, “Chemical Vapor Deposition Of Carbon Nanotubes: A Review On Growth Mechanism And Mass Production,” J. Nanosci. Nanotechnol., vol. 10, no. 6, pp. 3739–3758, Jun. 2010, doi: 10.1166/jnn.2010.2939.
  • [59] Y. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, and M. Li, “Hydrothermal Synthesis of Nanomaterials,” J. Nanomater., vol. 2020, pp. 1–3, Jan. 2020, doi: 10.1155/2020/8917013.
  • [60] G. Yang and S.-J. Park, “Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review,” Materials (Basel)., vol. 12, no. 7, p. 1177, Apr. 2019, doi: 10.3390/ma12071177.
  • [61] C. A. Charitidis, P. Georgiou, M. A. Koklioti, A.-F. Trompeta, and V. Markakis, “Manufacturing nanomaterials: from research to industry,” Manuf. Rev., vol. 1, p. 11, Sep. 2014, doi: 10.1051/mfreview/2014009.
  • [62] D. Bokov et al., “Nanomaterial by Sol-Gel Method: Synthesis and Application,” Adv. Mater. Sci. Eng., vol. 2021, pp. 1–21, Dec. 2021, doi: 10.1155/2021/5102014.
  • [63] X. Sun and N. Bandara, “Applications Of Reverse Micelles Technique İn Food Science: A Comprehensive Review,” Trends Food Sci. Technol., vol. 91, pp. 106–115, Sep. 2019, doi: 10.1016/j.tifs.2019.07.001.
  • [64] V. Uskokovic and M. Drofenik, “Synthesis Of Materials Within Reverse Micelles,” Surf. Rev. Lett., vol. 12, no. 02, pp. 239–277, Apr. 2005, doi: 10.1142/S0218625X05007001.
  • [65] V. Uskoković and M. Drofenik, “Reverse micelles: Inert nano-reactors or physico-chemically active guides of the capped reactions,” Adv. Colloid Interface Sci., vol. 133, no. 1, pp. 23–34, May 2007, doi: 10.1016/j.cis.2007.02.002.
  • [66] A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A Novel High Performance Non Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon Supported Pt-Ni Nanocomposite,” J. Mol. Liq., vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • [67] A. V. Levashov and N. L. Klyachko, “Reverse Micellar Systems: General Methodology,” in Enzymes in Nonaqueous Solvents, New Jersey: Humana Press, 2003, pp. 575–586. doi: 10.1385/1-59259-112-4:575.
  • [68] P. L. Luisi and B. Steinmann-Hofmann, “Activity And Conformation Of Enzymes In Reverse Micellar Solutions,” 1987, pp. 188–216. doi: 10.1016/S0076-6879(87)36021-5.
  • [69] S. Top, “In General, Two Types Of Microscopy Are Available: Optical Microscopy (OM) And Scanning Electron Microscopy (SEM). The Former İs The Oldest One, Which Has Been Used Since The Last Two Centuries İn The Form Of Simple Device With Limited Capabilities.”
  • [70] A. Eren and M. F. Baran, “Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi,” Türkiye Tarımsal Araştırmalar Derg., vol. 6, no. 2, pp. 165–173, 2019, doi: 10.19159/tutad.493006.
  • [71] A. E. Vladár and V.-D. Hodoroaba, “Characterization Of Nanoparticles By Scanning Electron Microscopy,” in Characterization of Nanoparticles, Elsevier, 2020, pp. 7–27. doi: 10.1016/B978-0-12-814182-3.00002-X.
  • [72] J. N. T. Nguyen and A. M. Harbison, “Scanning Electron Microscopy Sample Preparation and Imaging,” 2017, pp. 71–84. doi: 10.1007/978-1-4939-6990-6_5.
  • [73] A. Abdullah and A. Mohammed, “Scanning Electron Microscopy (SEM): A Review,” Proc. 2018 Int. Conf. Hydraul. Pneum. - HERVEX, pp. 77–85, 2019.
  • [74] M. Abd Mutalib, M. A. Rahman, M. H. D. Othman, A. F. Ismail, and J. Jaafar, “Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy,” in Membrane Characterization, Elsevier, 2017, pp. 161–179. doi: 10.1016/B978-0-444-63776-5.00009-7.
  • [75] J. Syed, “Scanning Electron Microscopy in Oral Research,” J. Pakistan Dent. Assoc., vol. 26, no. 4, pp. 189–195, Feb. 2018, doi: 10.25301/JPDA.264.189.
  • [76] Y. Lin, M. Zhou, X. Tai, H. Li, X. Han, and J. Yu, “Analytical Transmission Electron Microscopy For Emerging Advanced Materials,” Matter, vol. 4, no. 7, pp. 2309–2339, 2021, doi: 10.1016/j.matt.2021.05.005.
  • [77] T. Juffmann, S. A. Koppell, B. B. Klopfer, C. Ophus, R. M. Glaeser, and M. A. Kasevich, “Multi-Pass Transmission Electron Microscopy,” Sci. Rep., vol. 7, no. 1, p. 1699, May 2017, doi: 10.1038/s41598-017-01841-x.
  • [78] P. Harris, “Transmission Electron Microscopy of Carbon: A Brief History,” C, vol. 4, no. 1, p. 4, Jan. 2018, doi: 10.3390/c4010004.
  • [79] S. R. Spurgeon et al., “Towards Data Driven Next Generation Transmission Electron Microscopy,” Nat. Mater., vol. 20, no. 3, pp. 274–279, Mar. 2021, doi: 10.1038/s41563-020-00833-z.
  • [80] A. Rizvi, J. T. Mulvey, B. P. Carpenter, R. Talosig, and J. P. Patterson, “A Close Look At Molecular Self-Assembly With The Transmission Electron Microscope,” Chem. Rev., vol. 121, no. 22, pp. 14232–14280, Nov. 2021, doi: 10.1021/acs.chemrev.1c00189.
  • [81] M. L. Taheri et al., “Current Status and Future Directions For In Situ Transmission Electron Microscopy,” Ultramicroscopy, vol. 170, pp. 86–95, Nov. 2016, doi: 10.1016/j.ultramic.2016.08.007.
  • [82] D. Johnson, D. L. Oatley-Radcliffe, and N. Hilal, “Atomic Force Microscopy (AFM),” in Membrane Characterization, Elsevier, 2017, pp. 115–144. doi: 10.1016/B978-0-444-63776-5.00007-3.
  • [83] Y. F. Dufrêne et al., “Imaging Modes Of Atomic Force Microscopy For Application In Molecular And Cell Biology,” Nat. Nanotechnol., vol. 12, no. 4, pp. 295–307, 2017, doi: 10.1038/nnano.2017.45.
  • [84] N. Pavlicek and L. Gross, “Generation, Manipulation And Characterization Of Molecules By Atomic Force Microscopy,” Nat. Rev. Chem., vol. 1, 2017, doi: 10.1038/s41570-016-0005.
  • [85] S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum Nanocatalysts Prepared With Different Surfactants for C1–C3 Alcohol Oxidations and Their Surface Morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • [86] H. Khan, A. S. Yerramilli, A. D’Oliveira, T. L. Alford, D. C. Boffito, and G. S. Patience, “Experimental Methods İn Chemical Engineering: X‐Ray Diffraction Spectroscopy,” Can. J. Chem. Eng., vol. 98, no. 6, pp. 1255–1266, Jun. 2020, doi: 10.1002/cjce.23747.
  • [87] S. R. Falsafi, H. Rostamabadi, and S. M. Jafari, “X-Ray Diffraction (XRD) Of Nanoencapsulated Food Ingredients,” in Characterization of Nanoencapsulated Food Ingredients, Elsevier, 2020, pp. 271–293. doi: 10.1016/B978-0-12-815667-4.00009-2.
  • [88] C. Du, B. Liu, J. Hu, and H. Li, “Determination of iodine number of activated carbon by the method of ultraviolet–visible spectroscopy,” Mater. Lett., vol. 285, p. 129137, Feb. 2021, doi: 10.1016/j.matlet.2020.129137.
  • [89] Y. Dağlıoğlu, “Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi,” Marmara Fen Bilim. Derg., vol. 30, no. 1, pp. 1–17, Mar. 2018, doi: 10.7240/marufbd.346547.
  • [90] E. K. Çeven, N. Er, and G. Karakan Günaydın, “Nanopartikül Katkılı Polimer Yüzeylerin İletkenlik Özelliklerinin Optimizasyonu,” Uludağ Univ. J. Fac. Eng., pp. 345–364, Apr. 2021, doi: 10.17482/uumfd.836257.
  • [91] M. Ersöz, A. Işıtan, and M. Balaban, Nanoteknoloji 1 Nanoteknolojinin Temelleri, vol. 51, no. 1. 2018.
  • [92] Z. Tüylek, “Nano-medicine and The New Treatment Methods,” Eurasian JHS, vol. 4, no. 2, pp. 121–131, 2021.
  • [93] Z. Tüylek, “Nanoteknoloji Uygulamalarında Hayatımıza Yansımalar,” Eurasian J. Biol. Chem. Sci., vol. 4, no. 2, pp. 69–79, Dec. 2021, doi: 10.46239/ejbcs.909023.
  • [94] T. B. Meslek, “Nanoteknolojinin Endüstriyel Uygulamalardaki Yeri ve Önemi,” Do Bi̇li̇mleri̇ Ve Mat. Yeni̇li̇kçi̇ Çalişmalar, pp. 36–58, 2023, doi: 10.59287/dbmyc.480.
  • [95] N. Korkmaz et al., “Biogenic Silver Nanoparticles Synthesized Via Mimusops Elengi Fruit Extract, a Study on Antibiofilm, Antibacterial, and Anticancer Activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • [96] Q. Zhang, B. Jing, S. Qiu, C. Cui, Y. Zhu, and F. Deng, “A Mechanism İn Boosting H2 Generation: Nanotip-Enhanced Local Temperature And Electric Field With The Boundary Layer,” J. Colloid Interface Sci., vol. 629, pp. 755–765, Jan. 2023, doi: 10.1016/j.jcis.2022.09.011.
  • [97] A. Türker, Y. E. Bulbul, A. Öksüz, and G. Yurdabak Karaca, “Kanser Teşhis ve Tedavisinde Nano/Mikromotor Teknolojisi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 11, no. 3, pp. 652–672, 2023, doi: 10.29109/gujsc.1262755.
  • [98] E. Dönmez, H. T. Yüksel Dolgun, and Ş. Kırkan, “Nanopartiküler Aşılar,” J. Anatol. Environ. Anim. Sci., vol. 6, no. 4, pp. 578–584, 2021, doi: 10.35229/jaes.970713.
  • [99] T. B. Meslek, “Nanoteknolojinin Endüstriyel Uygulamalardaki Yeri ve Önem,” DoBi̇li̇mleri̇ VeMatemati̇kYeni̇li̇kçi̇ Çalişmalar, pp. 36–58, 2023, doi: 10.59287/dbmyc.480.
  • [100] K. Alaca and N. Güvenliği, “Nanotechnology Applications Used in the Food Industry, Safety of Nanofood and Nanoemulsion Technique,” Int. J. Food, Agric. Anim. Sci., vol. 1, no. 1, pp. 19–30, 2021.
  • [101] C. Sarı Tekin and A. Sarı Çetin, “Nanoteknoloji ve Nanomimarlık,” Int. J. Soc. Polit. Econ. Res., vol. 8, no. 1, pp. 47–54, 2021, doi: 10.46291/ijospervol8iss1pp47-54.
  • [102] A. K. Yetisen et al., “Nanotechnology in Textiles,” ACS Nano, vol. 10, no. 3, pp. 3042–3068, Mar. 2016, doi: 10.1021/acsnano.5b08176.
  • [103] S. Malik, K. Muhammad, and Y. Waheed, “Nanotechnology: A Revolution in Modern Industry,” Molecules, vol. 28, no. 2, p. 661, Jan. 2023, doi: 10.3390/molecules28020661.
  • [104] M. Akin, R. Bayat, V. Erduran, M. Bekmezci, I. Isik, and F. Şen, “Carbon Based Nanomaterials for Alcohol Fuel Cells,” in Nanomaterials for Direct Alcohol Fuel Cells, Elsevier, 2021, pp. 319–336. doi: 10.1016/B978-0-12-821713-9.00025-1.
  • [105] F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol,” Energy & Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/ef700575t.
  • [106] A. T. Hoang, “Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review,” Fuel Process. Technol., vol. 218, p. 106840, Jul. 2021, doi: 10.1016/j.fuproc.2021.106840.
  • [107] R. N. Mehta, M. Chakraborty, and P. A. Parikh, “Nanofuels: Combustion, engine performance and emissions,” Fuel, vol. 120, pp. 91–97, Mar. 2014, doi: 10.1016/j.fuel.2013.12.008.
  • [108] B. Bhushan, “Introduction to Nanotechnology: History, Status, and Importance of Nanoscience and Nanotechnology Education,” 2016, pp. 1–31. doi: 10.1007/978-3-319-31833-2_1.
  • [109] M. Orgill and S. A. Wood, “Chemistry Contributions to Nanoscience and Nanotechnology Education: A Review of the Literature,” J. Nano Educ., vol. 6, no. 2, pp. 83–108, Dec. 2014, doi: 10.1166/jne.2014.1065.
  • [110] M. C. Roco and W. S. Bainbridge, “Nanotechnology: Societal Implications Maximizing Benefit for Humanity,” in Report of the National Nanotechnology Initiative Workshop, 2003, p. 120.
  • [111] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric Sensor Based on Biogenic Nanomaterials for High Sensitive Detection of Hydrogen Peroxide and Multi Metals,” Chemosphere, vol. 339, p. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [112] H. Economy, “Hidrojenin Kullanım Alanları ve Hidrojen Ekonomisi,” Süleyman Demirel Üniversitesi Yekarum Derg., vol. 8, no. 1, pp. 20–31, 2023.
  • [113] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, and F. Sen, “Highly Efficient Polymer Supported Monodisperse Ruthenium Nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane,” J. Colloid Interface Sci., vol. 526, pp. 480–486, Sep. 2018, doi: 10.1016/j.jcis.2018.05.021.
  • [114] A. Aygun et al., “Highly Active Pdpt Bimetallic Nanoparticles Synthesized By One-Step Bioreduction Method: Characterizations, Anticancer, Antibacterial Activities And Evaluation Of Their Catalytic Effect For Hydrogen Generation,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6666–6679, Feb. 2023, doi: 10.1016/j.ijhydene.2021.12.144.
  • [115] Y. Wu et al., “Hydrogen Generation From Methanolysis Of Sodium Borohydride Using Waste Coffee Oil Modified Zinc Oxide Nanoparticles And Their Photocatalytic Activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
  • [116] Y. Wu et al., “Synthesis Of Novel Activated Carbon-Supported Trimetallic Pt–Ru–Ni Nanoparticles Using Wood Chips As Efficient Catalysts For The Hydrogen Generation From Nabh4 And Enhanced Photodegradation On Methylene Blue,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21055–21065, Jun. 2023, doi: 10.1016/j.ijhydene.2022.07.152.
  • [117] Y. Yildiz et al., “Highly Monodisperse Pt/Rh Nanoparticles Confined in the Graphene Oxide for Highly Efficient and Reusable Sorbents for Methylene Blue Removal from Aqueous Solutions,” ChemistrySelect, vol. 2, no. 2, pp. 697–701, Jan. 2017, doi: 10.1002/slct.201601608.
  • [118] B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Polymer Graphene Hybride Decorated Pt Nanoparticles as Highly Efficient and Reusable Catalyst for the Dehydrogenation of Dimethylamine Borane at Room Temperature,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23284–23291, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.112.
  • [119] M. H. Calimli, M. S. Nas, H. Burhan, S. D. Mustafov, Ö. Demirbas, and F. Sen, “Preparation, Characterization and Adsorption Kinetics of Methylene Blue Dye in Reduced Graphene Oxide Supported Nanoadsorbents,” J. Mol. Liq., vol. 309, p. 113171, Jul. 2020, doi: 10.1016/j.molliq.2020.113171.
  • [120] Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The Preparation and Characterization of Nano Sized Pt–Pd/C Catalysts and Comparison of Their Superior Catalytic Activities for Methanol and Ethanol Oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • [121] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide With the High Catalytic Activity and Reusability in the Dehydrogenation of Dimethylamine Borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • [122] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, and F. Sen, “Highly Efficient Catalytic Dehydrogenation of Dimethyl Ammonia Borane Via Monodisperse Palladium Nickel Alloy Nanoparticles Assembled on PEDOT,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.115.
  • [123] E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • [124] J. T. Abrahamson et al., “Excess Thermopower and the Theory of Thermopower Waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • [125] P. Taslimi et al., “Pyrazole[3,4-d] Pyridazine Derivatives: Molecular Docking and Explore of Acetylcholinesterase and Carbonic Anhydrase Enzymes inhibitors as Anticholinergics Potentials,” Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • [126] F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • [127] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon Nanotube Based Rhodium Nanoparticles as Highly Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • [128] B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A superior Catalyst for the Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • [129] M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced Electrochemical Performance of MnNi 2 O 4 /rGO Nanocomposite as Pseudocapacitor Electrode Material and Methanol Electro Oxidation Catalyst,” Nanotechnology, vol. 32, no. 32, p. 325707, Aug. 2021, doi: 10.1088/1361-6528/abfded.
Year 2024, Issue: 009, 16 - 38, 30.04.2024

Abstract

References

  • [1] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine,” Molecules, vol. 25, no. 1, p. 112, Dec. 2019, doi: 10.3390/molecules25010112.
  • [2] R. Darabi et al., “Biogenic Platinum-Based Bimetallic Nanoparticles: Synthesis, Characterization, Antimicrobial Activity And Hydrogen Evolution,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21270–21284, Jun. 2023, doi: 10.1016/j.ijhydene.2022.12.072.
  • [3] F. Karimi et al., “Efficient Green Photocatalyst of Silver Based Palladium Nanoparticles for Methyle Orange Photodegradation, Investigation of Lipid Peroxidation Inhibition, Antimicrobial, and Antioxidant Activity,” Food Chem. Toxicol., vol. 169, p. 113406, Nov. 2022, doi: 10.1016/j.fct.2022.113406.
  • [4] P. Köseoğlu and G. Mercan, “Biyoloji Öğretmen Adaylarının Nanoteknolojiye Yönelik Algıları,” Erzincan Üniversitesi Eğitim Fakültesi, vol. 20, no. 3, pp. 687–706, Dec. 2018, doi: 10.17556/erziefd.406187.
  • [5] N. Baig, I. Kammakakam, and W. Falath, “Nanomaterials: A Review Of Synthesis Methods, Properties, Recent Progress, And Challenges,” Mater. Adv., vol. 2, no. 6, pp. 1821–1871, 2021, doi: 10.1039/D0MA00807A.
  • [6] G. N. Kokila, C. Mallikarjunaswamy, and V. L. Ranganatha, “A Review On Synthesis And Applications Of Versatile Nanomaterials,” Inorg. Nano-Metal Chem., pp. 1–30, Jun. 2022, doi: 10.1080/24701556.2022.2081189.
  • [7] K. Arikan, H. Burhan, E. Sahin, and F. Sen, “A Sensitive, Fast, Selective, And Reusable Enzyme-Free Glucose Sensor Based On Monodisperse Auni Alloy Nanoparticles On Activated Carbon Support,” Chemosphere, vol. 291, p. 132718, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132718.
  • [8] H. Kumar et al., “Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications,” Int. J. Mol. Sci., vol. 21, no. 22, p. 8458, Nov. 2020, doi: 10.3390/ijms21228458.
  • [9] F. Muench, “Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts,” Catalysts, vol. 8, no. 12, p. 597, Dec. 2018, doi: 10.3390/catal8120597.
  • [10] H. Burhan et al., “Highly Efficient Carbon Hybrid Supported Catalysts Using Nano-Architecture As Anode Catalysts For Direct Methanol Fuel Cells,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6657–6665, 2023, doi: 10.1016/j.ijhydene.2021.12.141.
  • [11] J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and Applications of 3D Printing for Novel Materials,” Appl. Mater. Today, vol. 7, pp. 120–133, Jun. 2017, doi: 10.1016/j.apmt.2017.02.004.
  • [12] X. Liu and M. C. Hersam, “2D Materials for Quantum Information Science,” Nat. Rev. Mater., vol. 4, no. 10, pp. 669–684, Aug. 2019, doi: 10.1038/s41578-019-0136-x.
  • [13] A. M. Boies et al., “Agglomeration Dynamics of 1D Materials: Gas‐Phase Collision Rates of Nanotubes and Nanorods,” Small, vol. 15, no. 27, Jul. 2019, doi: 10.1002/smll.201900520.
  • [14] Z. Wang, T. Hu, R. Liang, and M. Wei, “Application of Zero-Dimensional Nanomaterials in Biosensing,” Front. Chem., vol. 8, Apr. 2020, doi: 10.3389/fchem.2020.00320.
  • [15] T. Gur, I. Meydan, H. Seckin, M. Bekmezci, and F. Sen, “Green Synthesis, Characterization and Bioactivity of Biogenic Zinc Oxide Nanoparticles,” Environ. Res., vol. 204, p. 111897, Mar. 2022, doi: 10.1016/j.envres.2021.111897.
  • [16] Y. Kocak et al., “Microwave-Assisted Fabrication of AgRuNi Trimetallic NPs with Their Antibacterial vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants,” Bionanoscience, Nov. 2023, doi: 10.1007/s12668-023-01237-4.
  • [17] Y. An et al., “Dealloying: An Effective Method for Scalable Fabrication of 0D, 1D, 2D, 3D Materials and Its Application in Energy Storage,” Nano Today, vol. 37, p. 101094, Apr. 2021, doi: 10.1016/j.nantod.2021.101094.
  • [18] R. Arenal and A. Lopez‐Bezanilla, “Boron Nitride Materials: An Overview From 0D to 3D Structures,” Wires Comput. Mol. Sci., vol. 5, no. 4, pp. 299–309, Jul. 2015, doi: 10.1002/wcms.1219.
  • [19] P. Bajpai, “Nanotechnology in Forest Industry,” vol. 2, no. December, p. 258, 2016.
  • [20] B. Şahin et al., “Cytotoxic Effects Of Platinum Nanoparticles Obtained From Pomegranate Extract By The Green Synthesis Method On The MCF-7 Cell Line,” Colloids Surfaces B Biointerfaces, vol. 163, pp. 119–124, Mar. 2018, doi: 10.1016/j.colsurfb.2017.12.042.
  • [21] M. Kurtay, H. G. Göksu, Haydar, H. Burhan, M. I. Ahamed, and F. Şen, “Magnetic Nanomaterials for Lithium-ion Batteries,” in Magnetic Nanomaterials for Lithium-ion Batteries, 2020, pp. 123–147. doi: 10.21741/9781644900918-5.
  • [22] F. Şen, Nanomaterials for Direct Alcohol Fuel Cells: Characterization, Design, and Electrocatalysis. Elsevier, 2021. doi: 10.1016/B978-0-12-821713-9.09990-X.
  • [23] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, and F. Şen, “Green Synthesis And Characterization Of Camellia Sinensis Mediated Silver Nanoparticles For Antibacterial Ceramic Applications,” Mater. Chem. Phys., vol. 250, p. 123037, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123037.
  • [24] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, and F. Sen, “Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane,” J. Colloid Interface Sci., vol. 526, pp. 480–486, Sep. 2018, doi: 10.1016/j.jcis.2018.05.021.
  • [25] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • [26] P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications,” Journal of Drug Delivery Science and Technology, vol. 53. p. 101174, Oct. 2019. doi: 10.1016/j.jddst.2019.101174.
  • [27] I. Meydan et al., “Chitosan/PVA Supported Silver Nanoparticles for Azo Dyes Removal: Fabrication, Characterization, and Assessment of Antioxidant Activity,” Environ. Sci. Adv., 2024, doi: 10.1039/D3VA00224A.
  • [28] Y. Li et al., “Developments of Advanced Electrospinning Techniques: A Critical Review,” Adv. Mater. Technol., vol. 6, no. 11, Nov. 2021, doi: 10.1002/admt.202100410.
  • [29] M. S. Islam, B. C. Ang, A. Andriyana, and A. M. Afifi, “A Review On Fabrication Of Nanofibers Via Electrospinning And Their Applications,” SN Appl. Sci., vol. 1, no. 10, p. 1248, Oct. 2019, doi: 10.1007/s42452-019-1288-4.
  • [30] J. Xue, T. Wu, Y. Dai, and Y. Xia, “Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications,” Chem. Rev., vol. 119, no. 8, pp. 5298–5415, Apr. 2019, doi: 10.1021/acs.chemrev.8b00593.
  • [31] K. Zhao, W. Wang, Y. Yang, K. Wang, and D.-G. Yu, “From Taylor Cone To Solid Nanofiber İn Tri-Axial Electrospinning: Size Relationships,” Results Phys., vol. 15, p. 102770, Dec. 2019, doi: 10.1016/j.rinp.2019.102770.
  • [32] X. Zhang, L. Xie, X. Wang, Z. Shao, and B. Kong, “Electrospinning Super-Assembly Of Ultrathin Fibers From Single- To Multi-Taylor Cone Sites,” Appl. Mater. Today, vol. 26, p. 101272, Mar. 2022, doi: 10.1016/j.apmt.2021.101272.
  • [33] J. Xiong et al., “Mass Production Of High-Quality Nanofibers Via Constructing Pre-Taylor Cones With High Curvature On Needleless Electrospinning,” Mater. Des., vol. 197, p. 109247, Jan. 2021, doi: 10.1016/j.matdes.2020.109247.
  • [34] H. S. SalehHudin, E. N. Mohamad, W. N. L. Mahadi, and A. Muhammad Afifi, “Multiple-Jet Electrospinning Methods For Nanofiber Processing: A Review,” Mater. Manuf. Process., vol. 33, no. 5, pp. 479–498, Apr. 2018, doi: 10.1080/10426914.2017.1388523.
  • [35] V. Beachley and X. Wen, “Effect Of Electrospinning Parameters On The Nanofiber Diameter And Length,” Mater. Sci. Eng. C, vol. 29, no. 3, pp. 663–668, Apr. 2009, doi: 10.1016/j.msec.2008.10.037.
  • [36] D. F. Fernandes, C. Majidi, and M. Tavakoli, “Digitally Printed Stretchable Electronics: A Review,” J. Mater. Chem. C, vol. 7, no. 45, pp. 14035–14068, 2019, doi: 10.1039/C9TC04246F.
  • [37] R. Bayat, H. Burhan, M. Bekmezci, E. S. Isgin, M. Akin, and F. Sen, “Synthesis And Characterization Of Lignin-Based Carbon Nanofiber Supported Platinum–Ruthenium Nanoparticles Obtained From Wood Sawdust And Applications İn Alcohol Fuel Cells,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21128–21138, Jun. 2023, doi: 10.1016/j.ijhydene.2022.10.237.
  • [38] W. E. Teo and S. Ramakrishna, “A Review On Electrospinning Design And Nanofibre Assemblies,” Nanotechnology, vol. 17, no. 14, pp. R89–R106, Jul. 2006, doi: 10.1088/0957-4484/17/14/R01.
  • [39] X. Qin and S. Wang, “Filtration Properties Of Electrospinning Nanofibers,” J. Appl. Polym. Sci., vol. 102, no. 2, pp. 1285–1290, Oct. 2006, doi: 10.1002/app.24361.
  • [40] F. Fadil, N. D. N. Affandi, M. I. Misnon, N. N. Bonnia, A. M. Harun, and M. K. Alam, “Review on Electrospun Nanofiber-Applied Products,” Polymers (Basel)., vol. 13, no. 13, p. 2087, Jun. 2021, doi: 10.3390/polym13132087.
  • [41] Y. Liu et al., “A Review On Recent Advances İn Application Of Electrospun Nanofiber Materials As Biosensors,” Curr. Opin. Biomed. Eng., vol. 13, pp. 174–189, Mar. 2020, doi: 10.1016/j.cobme.2020.02.001.
  • [42] H. Schift and A. Kristensen, “Nanoimprint Lithography,” 2017, pp. 113–142. doi: 10.1007/978-3-662-54357-3_5.
  • [43] H. Schift, “Nanoimprint Lithography: An Old Story in Modern Times?,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 26, no. 2, pp. 458–480, Mar. 2008, doi: 10.1116/1.2890972.
  • [44] L. M. Cox, A. M. Martinez, A. K. Blevins, N. Sowan, Y. Ding, and C. N. Bowman, “Nanoimprint Lithography: Emergent Materials and Methods Of Actuation,” Nano Today, vol. 31, p. 100838, Apr. 2020, doi: 10.1016/j.nantod.2019.100838.
  • [45] B. Wu and A. Kumar, “Extreme Ultraviolet Lithography: A Review,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 25, no. 6, pp. 1743–1761, Nov. 2007, doi: 10.1116/1.2794048.
  • [46] Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci., vol. 28, no. 1, pp. 153–184, Aug. 1998, doi: 10.1146/annurev.matsci.28.1.153.
  • [47] M. Tulinski and M. Jurczyk, “Nanomaterials Synthesis Methods,” in Metrology and Standardization of Nanotechnology, Wiley, 2017, pp. 75–98. doi: 10.1002/9783527800308.ch4.
  • [48] F. Meierhofer, L. Mädler, and U. Fritsching, “Nanoparticle evolution in flame spray pyrolysis—Process design via experimental and computational analysis,” AICHE J., vol. 66, no. 2, Feb. 2020, doi: 10.1002/aic.16885.
  • [49] Z.-S. Wu et al., “Synthesis Of Graphene Sheets With High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, vol. 3, no. 2, pp. 411–417, Feb. 2009, doi: 10.1021/nn900020u.
  • [50] D. Zhang et al., “Controllable Synthesis Of Carbon Nanomaterials By Direct Current Arc Discharge From The Inner Wall Of The Chamber,” Carbon N. Y., vol. 142, pp. 278–284, Feb. 2019, doi: 10.1016/j.carbon.2018.10.062.
  • [51] F. Liang, M. Tanaka, S. Choi, and T. Watanabe, “Formation Of Different Arc Anode Attachment Modes And Their Effect On Temperature Fluctuation For Carbon Nanomaterial Production In DC Arc Discharge,” Carbon N. Y., vol. 117, pp. 100–111, Jun. 2017, doi: 10.1016/j.carbon.2017.02.084.
  • [52] M. Akin, M. Bekmezci, R. Bayat, I. Isik, and F. Sen, “Ultralight Covalent Organic Frame Graphene Aerogels Modified Platinum Magnetite Nanostructure for Direct Methanol Fuel Cell,” Fuel, vol. 357, p. 129771, Feb. 2024, doi: 10.1016/j.fuel.2023.129771.
  • [53] B. Demirkan et al., “Palladium Supported on Polypyrrole/Reduced Graphene Oxide Nanoparticles for Simultaneous Biosensing Application of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 10, no. 1, p. 2946, Feb. 2020, doi: 10.1038/s41598-020-59935-y.
  • [54] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco Friendly Hydrogenation of Aromatic Aldehyde Compounds By Tandem Dehydrogenation of Dimethylamine Borane in the Presence of a Reduced Graphene Oxide Furnished Platinum Nanocatalyst,” Catal. Sci. Technol., vol. 6, no. 7, pp. 2318–2324, 2016, doi: 10.1039/C5CY01462J.
  • [55] N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, “Synthesis Of Single Wall Carbon Nanohorns By Arc Discharge In Air and Their Formation Mechanism,” Carbon N. Y., vol. 48, no. 5, pp. 1580–1585, Apr. 2010, doi: 10.1016/j.carbon.2009.12.055.
  • [56] J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications,” ChemPhysChem, vol. 18, no. 9, pp. 986–1006, May 2017, doi: 10.1002/cphc.201601220.
  • [57] C. A. Charitidis, P. Georgiou, M. A. Koklioti, A.-F. Trompeta, and V. Markakis, “Manufacturing Nanomaterials: From Research To İndustry,” Manuf. Rev., vol. 1, p. 11, Sep. 2014, doi: 10.1051/mfreview/2014009.
  • [58] M. Kumar and Y. Ando, “Chemical Vapor Deposition Of Carbon Nanotubes: A Review On Growth Mechanism And Mass Production,” J. Nanosci. Nanotechnol., vol. 10, no. 6, pp. 3739–3758, Jun. 2010, doi: 10.1166/jnn.2010.2939.
  • [59] Y. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, and M. Li, “Hydrothermal Synthesis of Nanomaterials,” J. Nanomater., vol. 2020, pp. 1–3, Jan. 2020, doi: 10.1155/2020/8917013.
  • [60] G. Yang and S.-J. Park, “Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review,” Materials (Basel)., vol. 12, no. 7, p. 1177, Apr. 2019, doi: 10.3390/ma12071177.
  • [61] C. A. Charitidis, P. Georgiou, M. A. Koklioti, A.-F. Trompeta, and V. Markakis, “Manufacturing nanomaterials: from research to industry,” Manuf. Rev., vol. 1, p. 11, Sep. 2014, doi: 10.1051/mfreview/2014009.
  • [62] D. Bokov et al., “Nanomaterial by Sol-Gel Method: Synthesis and Application,” Adv. Mater. Sci. Eng., vol. 2021, pp. 1–21, Dec. 2021, doi: 10.1155/2021/5102014.
  • [63] X. Sun and N. Bandara, “Applications Of Reverse Micelles Technique İn Food Science: A Comprehensive Review,” Trends Food Sci. Technol., vol. 91, pp. 106–115, Sep. 2019, doi: 10.1016/j.tifs.2019.07.001.
  • [64] V. Uskokovic and M. Drofenik, “Synthesis Of Materials Within Reverse Micelles,” Surf. Rev. Lett., vol. 12, no. 02, pp. 239–277, Apr. 2005, doi: 10.1142/S0218625X05007001.
  • [65] V. Uskoković and M. Drofenik, “Reverse micelles: Inert nano-reactors or physico-chemically active guides of the capped reactions,” Adv. Colloid Interface Sci., vol. 133, no. 1, pp. 23–34, May 2007, doi: 10.1016/j.cis.2007.02.002.
  • [66] A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A Novel High Performance Non Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon Supported Pt-Ni Nanocomposite,” J. Mol. Liq., vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • [67] A. V. Levashov and N. L. Klyachko, “Reverse Micellar Systems: General Methodology,” in Enzymes in Nonaqueous Solvents, New Jersey: Humana Press, 2003, pp. 575–586. doi: 10.1385/1-59259-112-4:575.
  • [68] P. L. Luisi and B. Steinmann-Hofmann, “Activity And Conformation Of Enzymes In Reverse Micellar Solutions,” 1987, pp. 188–216. doi: 10.1016/S0076-6879(87)36021-5.
  • [69] S. Top, “In General, Two Types Of Microscopy Are Available: Optical Microscopy (OM) And Scanning Electron Microscopy (SEM). The Former İs The Oldest One, Which Has Been Used Since The Last Two Centuries İn The Form Of Simple Device With Limited Capabilities.”
  • [70] A. Eren and M. F. Baran, “Fıstık (Pistacia vera L.) Yaprağından Gümüş Nanopartikül (AgNP)’lerin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi,” Türkiye Tarımsal Araştırmalar Derg., vol. 6, no. 2, pp. 165–173, 2019, doi: 10.19159/tutad.493006.
  • [71] A. E. Vladár and V.-D. Hodoroaba, “Characterization Of Nanoparticles By Scanning Electron Microscopy,” in Characterization of Nanoparticles, Elsevier, 2020, pp. 7–27. doi: 10.1016/B978-0-12-814182-3.00002-X.
  • [72] J. N. T. Nguyen and A. M. Harbison, “Scanning Electron Microscopy Sample Preparation and Imaging,” 2017, pp. 71–84. doi: 10.1007/978-1-4939-6990-6_5.
  • [73] A. Abdullah and A. Mohammed, “Scanning Electron Microscopy (SEM): A Review,” Proc. 2018 Int. Conf. Hydraul. Pneum. - HERVEX, pp. 77–85, 2019.
  • [74] M. Abd Mutalib, M. A. Rahman, M. H. D. Othman, A. F. Ismail, and J. Jaafar, “Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy,” in Membrane Characterization, Elsevier, 2017, pp. 161–179. doi: 10.1016/B978-0-444-63776-5.00009-7.
  • [75] J. Syed, “Scanning Electron Microscopy in Oral Research,” J. Pakistan Dent. Assoc., vol. 26, no. 4, pp. 189–195, Feb. 2018, doi: 10.25301/JPDA.264.189.
  • [76] Y. Lin, M. Zhou, X. Tai, H. Li, X. Han, and J. Yu, “Analytical Transmission Electron Microscopy For Emerging Advanced Materials,” Matter, vol. 4, no. 7, pp. 2309–2339, 2021, doi: 10.1016/j.matt.2021.05.005.
  • [77] T. Juffmann, S. A. Koppell, B. B. Klopfer, C. Ophus, R. M. Glaeser, and M. A. Kasevich, “Multi-Pass Transmission Electron Microscopy,” Sci. Rep., vol. 7, no. 1, p. 1699, May 2017, doi: 10.1038/s41598-017-01841-x.
  • [78] P. Harris, “Transmission Electron Microscopy of Carbon: A Brief History,” C, vol. 4, no. 1, p. 4, Jan. 2018, doi: 10.3390/c4010004.
  • [79] S. R. Spurgeon et al., “Towards Data Driven Next Generation Transmission Electron Microscopy,” Nat. Mater., vol. 20, no. 3, pp. 274–279, Mar. 2021, doi: 10.1038/s41563-020-00833-z.
  • [80] A. Rizvi, J. T. Mulvey, B. P. Carpenter, R. Talosig, and J. P. Patterson, “A Close Look At Molecular Self-Assembly With The Transmission Electron Microscope,” Chem. Rev., vol. 121, no. 22, pp. 14232–14280, Nov. 2021, doi: 10.1021/acs.chemrev.1c00189.
  • [81] M. L. Taheri et al., “Current Status and Future Directions For In Situ Transmission Electron Microscopy,” Ultramicroscopy, vol. 170, pp. 86–95, Nov. 2016, doi: 10.1016/j.ultramic.2016.08.007.
  • [82] D. Johnson, D. L. Oatley-Radcliffe, and N. Hilal, “Atomic Force Microscopy (AFM),” in Membrane Characterization, Elsevier, 2017, pp. 115–144. doi: 10.1016/B978-0-444-63776-5.00007-3.
  • [83] Y. F. Dufrêne et al., “Imaging Modes Of Atomic Force Microscopy For Application In Molecular And Cell Biology,” Nat. Nanotechnol., vol. 12, no. 4, pp. 295–307, 2017, doi: 10.1038/nnano.2017.45.
  • [84] N. Pavlicek and L. Gross, “Generation, Manipulation And Characterization Of Molecules By Atomic Force Microscopy,” Nat. Rev. Chem., vol. 1, 2017, doi: 10.1038/s41570-016-0005.
  • [85] S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum Nanocatalysts Prepared With Different Surfactants for C1–C3 Alcohol Oxidations and Their Surface Morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • [86] H. Khan, A. S. Yerramilli, A. D’Oliveira, T. L. Alford, D. C. Boffito, and G. S. Patience, “Experimental Methods İn Chemical Engineering: X‐Ray Diffraction Spectroscopy,” Can. J. Chem. Eng., vol. 98, no. 6, pp. 1255–1266, Jun. 2020, doi: 10.1002/cjce.23747.
  • [87] S. R. Falsafi, H. Rostamabadi, and S. M. Jafari, “X-Ray Diffraction (XRD) Of Nanoencapsulated Food Ingredients,” in Characterization of Nanoencapsulated Food Ingredients, Elsevier, 2020, pp. 271–293. doi: 10.1016/B978-0-12-815667-4.00009-2.
  • [88] C. Du, B. Liu, J. Hu, and H. Li, “Determination of iodine number of activated carbon by the method of ultraviolet–visible spectroscopy,” Mater. Lett., vol. 285, p. 129137, Feb. 2021, doi: 10.1016/j.matlet.2020.129137.
  • [89] Y. Dağlıoğlu, “Nanopartikül Karakterizasyon Yöntemleri ve Ekotoksisite Deneylerindeki Önemi,” Marmara Fen Bilim. Derg., vol. 30, no. 1, pp. 1–17, Mar. 2018, doi: 10.7240/marufbd.346547.
  • [90] E. K. Çeven, N. Er, and G. Karakan Günaydın, “Nanopartikül Katkılı Polimer Yüzeylerin İletkenlik Özelliklerinin Optimizasyonu,” Uludağ Univ. J. Fac. Eng., pp. 345–364, Apr. 2021, doi: 10.17482/uumfd.836257.
  • [91] M. Ersöz, A. Işıtan, and M. Balaban, Nanoteknoloji 1 Nanoteknolojinin Temelleri, vol. 51, no. 1. 2018.
  • [92] Z. Tüylek, “Nano-medicine and The New Treatment Methods,” Eurasian JHS, vol. 4, no. 2, pp. 121–131, 2021.
  • [93] Z. Tüylek, “Nanoteknoloji Uygulamalarında Hayatımıza Yansımalar,” Eurasian J. Biol. Chem. Sci., vol. 4, no. 2, pp. 69–79, Dec. 2021, doi: 10.46239/ejbcs.909023.
  • [94] T. B. Meslek, “Nanoteknolojinin Endüstriyel Uygulamalardaki Yeri ve Önemi,” Do Bi̇li̇mleri̇ Ve Mat. Yeni̇li̇kçi̇ Çalişmalar, pp. 36–58, 2023, doi: 10.59287/dbmyc.480.
  • [95] N. Korkmaz et al., “Biogenic Silver Nanoparticles Synthesized Via Mimusops Elengi Fruit Extract, a Study on Antibiofilm, Antibacterial, and Anticancer Activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • [96] Q. Zhang, B. Jing, S. Qiu, C. Cui, Y. Zhu, and F. Deng, “A Mechanism İn Boosting H2 Generation: Nanotip-Enhanced Local Temperature And Electric Field With The Boundary Layer,” J. Colloid Interface Sci., vol. 629, pp. 755–765, Jan. 2023, doi: 10.1016/j.jcis.2022.09.011.
  • [97] A. Türker, Y. E. Bulbul, A. Öksüz, and G. Yurdabak Karaca, “Kanser Teşhis ve Tedavisinde Nano/Mikromotor Teknolojisi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 11, no. 3, pp. 652–672, 2023, doi: 10.29109/gujsc.1262755.
  • [98] E. Dönmez, H. T. Yüksel Dolgun, and Ş. Kırkan, “Nanopartiküler Aşılar,” J. Anatol. Environ. Anim. Sci., vol. 6, no. 4, pp. 578–584, 2021, doi: 10.35229/jaes.970713.
  • [99] T. B. Meslek, “Nanoteknolojinin Endüstriyel Uygulamalardaki Yeri ve Önem,” DoBi̇li̇mleri̇ VeMatemati̇kYeni̇li̇kçi̇ Çalişmalar, pp. 36–58, 2023, doi: 10.59287/dbmyc.480.
  • [100] K. Alaca and N. Güvenliği, “Nanotechnology Applications Used in the Food Industry, Safety of Nanofood and Nanoemulsion Technique,” Int. J. Food, Agric. Anim. Sci., vol. 1, no. 1, pp. 19–30, 2021.
  • [101] C. Sarı Tekin and A. Sarı Çetin, “Nanoteknoloji ve Nanomimarlık,” Int. J. Soc. Polit. Econ. Res., vol. 8, no. 1, pp. 47–54, 2021, doi: 10.46291/ijospervol8iss1pp47-54.
  • [102] A. K. Yetisen et al., “Nanotechnology in Textiles,” ACS Nano, vol. 10, no. 3, pp. 3042–3068, Mar. 2016, doi: 10.1021/acsnano.5b08176.
  • [103] S. Malik, K. Muhammad, and Y. Waheed, “Nanotechnology: A Revolution in Modern Industry,” Molecules, vol. 28, no. 2, p. 661, Jan. 2023, doi: 10.3390/molecules28020661.
  • [104] M. Akin, R. Bayat, V. Erduran, M. Bekmezci, I. Isik, and F. Şen, “Carbon Based Nanomaterials for Alcohol Fuel Cells,” in Nanomaterials for Direct Alcohol Fuel Cells, Elsevier, 2021, pp. 319–336. doi: 10.1016/B978-0-12-821713-9.00025-1.
  • [105] F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert -Octanethiol,” Energy & Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/ef700575t.
  • [106] A. T. Hoang, “Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review,” Fuel Process. Technol., vol. 218, p. 106840, Jul. 2021, doi: 10.1016/j.fuproc.2021.106840.
  • [107] R. N. Mehta, M. Chakraborty, and P. A. Parikh, “Nanofuels: Combustion, engine performance and emissions,” Fuel, vol. 120, pp. 91–97, Mar. 2014, doi: 10.1016/j.fuel.2013.12.008.
  • [108] B. Bhushan, “Introduction to Nanotechnology: History, Status, and Importance of Nanoscience and Nanotechnology Education,” 2016, pp. 1–31. doi: 10.1007/978-3-319-31833-2_1.
  • [109] M. Orgill and S. A. Wood, “Chemistry Contributions to Nanoscience and Nanotechnology Education: A Review of the Literature,” J. Nano Educ., vol. 6, no. 2, pp. 83–108, Dec. 2014, doi: 10.1166/jne.2014.1065.
  • [110] M. C. Roco and W. S. Bainbridge, “Nanotechnology: Societal Implications Maximizing Benefit for Humanity,” in Report of the National Nanotechnology Initiative Workshop, 2003, p. 120.
  • [111] A. Aygun, G. Sahin, R. N. E. Tiri, Y. Tekeli, and F. Sen, “Colorimetric Sensor Based on Biogenic Nanomaterials for High Sensitive Detection of Hydrogen Peroxide and Multi Metals,” Chemosphere, vol. 339, p. 139702, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139702.
  • [112] H. Economy, “Hidrojenin Kullanım Alanları ve Hidrojen Ekonomisi,” Süleyman Demirel Üniversitesi Yekarum Derg., vol. 8, no. 1, pp. 20–31, 2023.
  • [113] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, and F. Sen, “Highly Efficient Polymer Supported Monodisperse Ruthenium Nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane,” J. Colloid Interface Sci., vol. 526, pp. 480–486, Sep. 2018, doi: 10.1016/j.jcis.2018.05.021.
  • [114] A. Aygun et al., “Highly Active Pdpt Bimetallic Nanoparticles Synthesized By One-Step Bioreduction Method: Characterizations, Anticancer, Antibacterial Activities And Evaluation Of Their Catalytic Effect For Hydrogen Generation,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6666–6679, Feb. 2023, doi: 10.1016/j.ijhydene.2021.12.144.
  • [115] Y. Wu et al., “Hydrogen Generation From Methanolysis Of Sodium Borohydride Using Waste Coffee Oil Modified Zinc Oxide Nanoparticles And Their Photocatalytic Activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/j.ijhydene.2022.04.177.
  • [116] Y. Wu et al., “Synthesis Of Novel Activated Carbon-Supported Trimetallic Pt–Ru–Ni Nanoparticles Using Wood Chips As Efficient Catalysts For The Hydrogen Generation From Nabh4 And Enhanced Photodegradation On Methylene Blue,” Int. J. Hydrogen Energy, vol. 48, no. 55, pp. 21055–21065, Jun. 2023, doi: 10.1016/j.ijhydene.2022.07.152.
  • [117] Y. Yildiz et al., “Highly Monodisperse Pt/Rh Nanoparticles Confined in the Graphene Oxide for Highly Efficient and Reusable Sorbents for Methylene Blue Removal from Aqueous Solutions,” ChemistrySelect, vol. 2, no. 2, pp. 697–701, Jan. 2017, doi: 10.1002/slct.201601608.
  • [118] B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Polymer Graphene Hybride Decorated Pt Nanoparticles as Highly Efficient and Reusable Catalyst for the Dehydrogenation of Dimethylamine Borane at Room Temperature,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23284–23291, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.112.
  • [119] M. H. Calimli, M. S. Nas, H. Burhan, S. D. Mustafov, Ö. Demirbas, and F. Sen, “Preparation, Characterization and Adsorption Kinetics of Methylene Blue Dye in Reduced Graphene Oxide Supported Nanoadsorbents,” J. Mol. Liq., vol. 309, p. 113171, Jul. 2020, doi: 10.1016/j.molliq.2020.113171.
  • [120] Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The Preparation and Characterization of Nano Sized Pt–Pd/C Catalysts and Comparison of Their Superior Catalytic Activities for Methanol and Ethanol Oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • [121] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide With the High Catalytic Activity and Reusability in the Dehydrogenation of Dimethylamine Borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • [122] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, and F. Sen, “Highly Efficient Catalytic Dehydrogenation of Dimethyl Ammonia Borane Via Monodisperse Palladium Nickel Alloy Nanoparticles Assembled on PEDOT,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, Sep. 2017, doi: 10.1016/j.ijhydene.2017.05.115.
  • [123] E. Erken, Y. Yıldız, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • [124] J. T. Abrahamson et al., “Excess Thermopower and the Theory of Thermopower Waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/nn402411k.
  • [125] P. Taslimi et al., “Pyrazole[3,4-d] Pyridazine Derivatives: Molecular Docking and Explore of Acetylcholinesterase and Carbonic Anhydrase Enzymes inhibitors as Anticholinergics Potentials,” Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • [126] F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • [127] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon Nanotube Based Rhodium Nanoparticles as Highly Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • [128] B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A superior Catalyst for the Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • [129] M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced Electrochemical Performance of MnNi 2 O 4 /rGO Nanocomposite as Pseudocapacitor Electrode Material and Methanol Electro Oxidation Catalyst,” Nanotechnology, vol. 32, no. 32, p. 325707, Aug. 2021, doi: 10.1088/1361-6528/abfded.
There are 129 citations in total.

Details

Primary Language English
Subjects Nanobiotechnology, Bioassays, Sensor Technology, Nanochemistry, Nanomaterials
Journal Section Research Articles
Authors

Ebru Halvacı 0009-0003-6062-7622

Özge Özdemir 0009-0008-3821-5126

Mücella Kaya 0009-0003-4522-7153

Yüksel Elif Serin 0009-0005-2989-5949

Gamze Tekkanat 0009-0009-0966-1044

Teslime Kozak 0009-0006-9446-8449

Ayşenur Aygün 0000-0002-8547-2589

Publication Date April 30, 2024
Submission Date December 26, 2023
Acceptance Date January 23, 2024
Published in Issue Year 2024 Issue: 009

Cite

APA Halvacı, E., Özdemir, Ö., Kaya, M., Serin, Y. E., et al. (2024). Small particles, big changes; synthesis, characterization of nanomaterials and an overview of their application areas. Journal of Scientific Reports-B(009), 16-38.
AMA Halvacı E, Özdemir Ö, Kaya M, Serin YE, Tekkanat G, Kozak T, Aygün A. Small particles, big changes; synthesis, characterization of nanomaterials and an overview of their application areas. JSR-B. April 2024;(009):16-38.
Chicago Halvacı, Ebru, Özge Özdemir, Mücella Kaya, Yüksel Elif Serin, Gamze Tekkanat, Teslime Kozak, and Ayşenur Aygün. “Small Particles, Big Changes; Synthesis, Characterization of Nanomaterials and an Overview of Their Application Areas”. Journal of Scientific Reports-B, no. 009 (April 2024): 16-38.
EndNote Halvacı E, Özdemir Ö, Kaya M, Serin YE, Tekkanat G, Kozak T, Aygün A (April 1, 2024) Small particles, big changes; synthesis, characterization of nanomaterials and an overview of their application areas. Journal of Scientific Reports-B 009 16–38.
IEEE E. Halvacı, Ö. Özdemir, M. Kaya, Y. E. Serin, G. Tekkanat, T. Kozak, and A. Aygün, “Small particles, big changes; synthesis, characterization of nanomaterials and an overview of their application areas”, JSR-B, no. 009, pp. 16–38, April 2024.
ISNAD Halvacı, Ebru et al. “Small Particles, Big Changes; Synthesis, Characterization of Nanomaterials and an Overview of Their Application Areas”. Journal of Scientific Reports-B 009 (April 2024), 16-38.
JAMA Halvacı E, Özdemir Ö, Kaya M, Serin YE, Tekkanat G, Kozak T, Aygün A. Small particles, big changes; synthesis, characterization of nanomaterials and an overview of their application areas. JSR-B. 2024;:16–38.
MLA Halvacı, Ebru et al. “Small Particles, Big Changes; Synthesis, Characterization of Nanomaterials and an Overview of Their Application Areas”. Journal of Scientific Reports-B, no. 009, 2024, pp. 16-38.
Vancouver Halvacı E, Özdemir Ö, Kaya M, Serin YE, Tekkanat G, Kozak T, Aygün A. Small particles, big changes; synthesis, characterization of nanomaterials and an overview of their application areas. JSR-B. 2024(009):16-38.