Research Article
BibTex RIS Cite

Cevapsızlık olması ve olmaması durumlarında sistematik örneklemede ortalama tahmini

Year 2017, Volume: 10 Issue: 1, 23 - 39, 25.06.2017

Abstract

Bu çalışmada cevapsızlık varlığında ve yokluğunda sistematik örneklem ortalamasının tahmini için dönüşüm yapılmış yardımcı değişkenler kullanılarak iki yeni tahmin edici sınıfı önerildi. Yan ve hata karaler ortalamalarının matematiksel formülleri bulundu. Ayrıca önerilen tahmin edicilerin performansını göstermek için sayısal bir örnek yapılmıştır.Sayısal çalışma sonucunda, önerilen tahmin ediciler sistematik örneklemede genel örneklem ortalamasından, regresyon tahmin edicisinden, Singh and Solanki [8], Singh et al. [9], Swain [11] ve Koyuncu [3] tahmin edicilerinden daha iyi sonuç vermiştir

References

  • [1] W.G. Cochran, 1977, Sampling Technique, 3rd ed., John Wiley and Sons, New York.
  • [2] M.H. Hansen, W.N. Hurwitz, 1946, The problem of non-response in sample surveys, Journal of the American Statistical Association, 41, 517-529.
  • [3] N. Koyuncu, 2012, Efficient estimators of population mean using auxiliary attributes, Applied Mathematics and Computation, 218, 10900-10905.
  • [4] S. Mohanty, J. Sahoo, 1995, A note on improving the ratio method of estimation through linear transformation using certain known population parameters, Sankhya: The Indian Journal of Statistics, Series B, 57, 93-102.
  • [5] M.N. Murthy, 1967, Sampling: Theory and Methods, Statistical Publishing Society, Calcutta.
  • [6] S. Riaz, G. Diana, J. Shabbir, 2017, Modified classes of estimators in circular systematic sampling, Hacettepe J. Math. Stat, Doi: 10.15672/HJMS.20158412762.
  • [7] N. D. Shukla, 1971, Systematic sampling and product method of estimation, In Proceeding of all India Seminar on Demography and Statistics, BHU, Varanasi, India.
  • [8] H.P. Singh, R.S. Solanki, 2012, An efficient class of estimators for the population mean using auxiliary information in systematic sampling, Journal of Statistical Theory and Practice, 6, 274-285.
  • [9] R. Singh, S. Malik, M.K. Chaudhary, H.K. Verma, A.A. Adewara, 2012, A general family of ratio-type estimators in systematic sampling, Journal of Reliability and Statistical Studies, 5, 73-82.
  • [10] A.K.P.C. Swain, 1964, The use of systematic sampling in ratio estimate, Jour. Ind. Stat. Assoc, 2, 160-164.
  • [11] A.K.P.C. Swain, 2014, On an improved ratio type estimator of finite population mean in sample surveys ratio, Revista Investigacion Operacional, 35,1, 49-57.
  • [12] H.K. Verma, 2014, Some improved estimators in systematic sampling under non-response, National Academy Science Letters, 37, 91-95.

Estimation of population mean under systematic random sampling in absence and presence non-response

Year 2017, Volume: 10 Issue: 1, 23 - 39, 25.06.2017

Abstract

In this article, we propose two new classes of estimator using transformed auxiliary variables for the estimation of systematic sample mean in absence and presence of non-response. The mathematical expressions of biases and mean square errors are determined. A numerical illustration is also performed to illustrate the performance of the proposed estimators. Based on the numerical study, the proposed estimator performs better than the usual sample estimator, regression estimator, Singh and Solanki [8], Singh et al. [9], Swain [11] and Koyuncu [3] estimators in systematic sampling.

References

  • [1] W.G. Cochran, 1977, Sampling Technique, 3rd ed., John Wiley and Sons, New York.
  • [2] M.H. Hansen, W.N. Hurwitz, 1946, The problem of non-response in sample surveys, Journal of the American Statistical Association, 41, 517-529.
  • [3] N. Koyuncu, 2012, Efficient estimators of population mean using auxiliary attributes, Applied Mathematics and Computation, 218, 10900-10905.
  • [4] S. Mohanty, J. Sahoo, 1995, A note on improving the ratio method of estimation through linear transformation using certain known population parameters, Sankhya: The Indian Journal of Statistics, Series B, 57, 93-102.
  • [5] M.N. Murthy, 1967, Sampling: Theory and Methods, Statistical Publishing Society, Calcutta.
  • [6] S. Riaz, G. Diana, J. Shabbir, 2017, Modified classes of estimators in circular systematic sampling, Hacettepe J. Math. Stat, Doi: 10.15672/HJMS.20158412762.
  • [7] N. D. Shukla, 1971, Systematic sampling and product method of estimation, In Proceeding of all India Seminar on Demography and Statistics, BHU, Varanasi, India.
  • [8] H.P. Singh, R.S. Solanki, 2012, An efficient class of estimators for the population mean using auxiliary information in systematic sampling, Journal of Statistical Theory and Practice, 6, 274-285.
  • [9] R. Singh, S. Malik, M.K. Chaudhary, H.K. Verma, A.A. Adewara, 2012, A general family of ratio-type estimators in systematic sampling, Journal of Reliability and Statistical Studies, 5, 73-82.
  • [10] A.K.P.C. Swain, 1964, The use of systematic sampling in ratio estimate, Jour. Ind. Stat. Assoc, 2, 160-164.
  • [11] A.K.P.C. Swain, 2014, On an improved ratio type estimator of finite population mean in sample surveys ratio, Revista Investigacion Operacional, 35,1, 49-57.
  • [12] H.K. Verma, 2014, Some improved estimators in systematic sampling under non-response, National Academy Science Letters, 37, 91-95.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Usman Shahzad

Muhammad Hanif This is me

Nursel Koyuncu

Amelia Victoria Garcia Luengo

Publication Date June 25, 2017
Published in Issue Year 2017 Volume: 10 Issue: 1

Cite

IEEE U. Shahzad, M. Hanif, N. Koyuncu, and A. V. G. Luengo, “Estimation of population mean under systematic random sampling in absence and presence non-response”, JSSA, vol. 10, no. 1, pp. 23–39, 2017.