Abstract
Kısmi En Küçük Kareler Regresyonu (KEKKR), bilimsel araştırmaların birçok alanında çoklu doğrusal bağlantı probleminin üstesinden gelmede sıradan en küçük karelere bir alternatif oluşturmaktadır. KEKKR yönteminin temelinde regresyon modeli ile iç içe geçmiş bir boyut indirgeme tekniği yer almaktadır. Bu çalışmada, genetik algoritma-kısmi en küçük kareler
regresyonu (GAKEKK) incelenmiştir. Bu yöntemde, değişken seçiminde kullanılan KEKK ile güçlü optimizasyon yöntemleri olan GA birleştirilmiştir. İz düşüm için değişken önemi, KEKK ağırlıklarının ağırlıklandırılmış kareler toplamı olarak isimlendirilmekte ve hem X hem de Y’i modellemede bir değişkenin önemini özetlemektedir (Wold ve arkadaşları, 2001). Bu çalışmada, daha küçük hataya sahip modeli belirlemede GAKEKK tahmin modeli, KEKK-NIPALS modeli ve KEKK-VIP yöntemlerinin performans karşılaştırmaları R2adj değerleri kullanılarak incelenmiştir.