Sağkalım analizi çalışmalarında kullanılan veri tipleri genelde sağdan sansürlü verilerdir. Bu tür çalışmalarda amaç, hastalığın sağkalım süresine etki eden prognostik faktörleri (açıklayıcı değişkenler) belirlemektir. Bunun için Cox regresyon modeli (Cox oransal hazard modeli) kullanılmaktadır. Ancak sağkalım süreleri bazen parametrik bir dağılım gösterebilir. Bu durumda parametrik regresyon modelleri kullanılır. Bu çalışmada kemik iliği naklinde kullanılan interferon-α tedavisinde elde edilen sağdan sansürlü veriler incelendi. Bu veriler kullanılarak Cox regresyon modeli kuruldu ve interferon-α tedavisine etki yapan önemli prognostik faktörler belirlendi. Önemli olduğu düşünülen değişkenler tabakalı alınarak, tabakalı Cox regresyon modeli kuruldu ve tabakalı Cox regresyon modeli ile tabakasız Cox regresyon modeli sonuçları karşılaştırıldı. Ayrıca sağkalım sürelerine uygun parametrik dağılımlar, çeşitli yöntemlerle (AIC, logL, artıklar ve grafik yöntemi) incelendi ve en uygun dağılımın log-normal dağılım olduğu görüldü. Log-normal regresyon modeli ile tabakalı ve tabakasız Cox regresyon modeli sonuçları karşılaştırıldı.
The data type used in survival analysis is generally right censored data. The aim in this kind of studies is to determine prognostic factors which have effects on survival time. For the above reason Cox regression model is used. Nevertheless survival times sometimes may have parametric distribution. In this case parametric regression models are used. In this study, the right censored data obtained from interferon-α treatment used in bone marrow transplant were investigated. Using this data, Cox regression model was constructed and prognostic factors, which have effects on interferon-α treatment, were determined. Taking variables which are thought important, as stratified, stratified Cox regression model was constructed. Stratified Cox regression model and Cox regression model was compared. Also parametric distributions, which a suitable for survival times, were examined using various methods such as AIC, LogL, residuals and graphic method. Log-normal regression model was selected as the most appropriate model. Latter model and the other models examined in this study are compared.
Primary Language | Turkish |
---|---|
Subjects | Statistics |
Journal Section | Research Articles |
Authors | |
Publication Date | April 15, 2004 |
Published in Issue | Year 2004 Volume: 3 Issue: 1 |