Conference Paper
BibTex RIS Cite

Bayesian Inferences About Variance Components in a Mixed Linear Model Via Gibbs Sampling

Year 2002, Volume: 1 Issue: 2, 225 - 235, 16.08.2002

Abstract

Markov chain Monte Carlo methods are increasingly being applied to make inferences about the marginal posterior distributions of parameters in quantitative genetic models. This paper considers the application of one such method. Gibbs sampling, to Bayesian inferences about parameters in a mixed linear model. Gibbs sampling is a method of numerical integration that allows inferences to be made about joint or marginal density, even those densities cannot be evaluated directly. It is based on generation, in sequence, of variables from all of the full conditional densities. Full conditional density is the density of a variable given all other parameters in the model. In the problem of estimation of variance components, the joint density of interest is the distribution of fixed effects, covariate effects, random effects and variance components, all given the data and the marginal densities are the distributions of fixed effects, covariate effects, random effects, or variance components, given the data. In this research, estimates of posterior distributions of genetic and phenotypic parameters for milk yield are obtained for 20438 Turkish Holstein-Friesian cows using restricted maximum likelihood (REML) and Gibbs sampling methods.

References

  • FIRAT, M.Z. (1995), Bayesian Methods in the Selection of Farm Animals for Breeding, Phd Thesis, Edinburg University.
  • FIRAT, M.Z., THEOBALD, C.M., THOMPSON, R. (1997), “Univariate analysis of test day milk yields of British Holstein Friesian heifers using Gibbs sampling”, Acta Agric. Scand., Sect. A, Anim, Sci., 47, 213-220.
  • GELFAND, A.E., SMITH, A.F.M. (1990), “Sampling-based approaches to calculating marginal densities”, Journal of Amer. Statist. Assoc., 85, 398-409.
  • GEMAN, S., GEMAN, D. (1984), “Stochastic relaxation, Gibbs distributions dnd the Bayesian restoration of images”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
  • GIANOLA, D., FERNANDO, R.L. (1986) “Bayesian methods ın animal breeding theory” Journal of Animal Science, 63, 217-244.
  • GIANOLA, D., IM, S., FERNANDO, R.L. FOULLEY, J.L. (1990), “Mixed model methodology and the Box-Cox theory of transformations: a Bayesian approach”. In: Advances in Statistical Methods for the Genetic Improvement of Livestock (Gianola, D. And Hammond, K. eds) Springer-Verlag, Berlin, 210-238.
  • HASTINGS, W.K. (1970), “Monte carlo sampling methods using Markov Chains and their applications”. Biometrika, 57, 97-109.
  • HOBERT, J.P. (1994) Occurences and Consequences of Nonpositive Markov Chains in Gibbs Sampling. Phd Thesis, Cornell University.
  • JENSEN, J., WANG, C.S., SORENSEN, D.A., GIANOLA, D. (1994), “Bayesian inference on variance and covariance components for traits influenced by maternal and direct genetic effects using the Gibbs sampler” Acta Agric. Scand., 44, 193-201.
  • RAFTERY, A.E., LEWIS, S.M. (1992), “How many iterations in the Gibbs sampler?” In Bayesian Statistics 4, Bernardo, J.M. Berger, J.O., David, A.P. and Smith, A.F.M. (eds). Oxford: Clarendon Press, 763-773.
  • WANG, C.S., RUTLEDGE, J.J., GIANOLA, D. (1993), “Marginal inferences about variance components in a mixed linear model using Gibbs Sampling”. Genet. Sel. Evol., 25, 41-62.
  • WANG, C.S., RUTLEDGE, J.J., GIANOLA, D. (1994), “Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size ın iberian pigs”. Genet. Sel. Evol., 26, 91-115.

Gibbs Örneklemesi ile Karışık Doğrusal Bir Modeldeki Varyans Unsurları Hakkında Bayesci Yorumlama

Year 2002, Volume: 1 Issue: 2, 225 - 235, 16.08.2002

Abstract

Markov zinciri Monte Carlo yöntemleri sayısal genetik modellerde parametrelerin marginal sonsal dağılımları hakkında yorumlamalar yapmada giderek artan bir biçimde uygulanmaktadır. Bu makale, böyle metotlardan biri olan Gibbs örneklemesinin karışık bir doğrusal modelde parametreler hakkında Bayesci yorumlamaya uygulanmasını ele almaktadır. Gibs örneklemesi, bileşik veya marjinal yoğunluklar doğrudan doğruya elde edilmeseler dahi, yorumlamalar yapılmasına izin veren sayısal bir integral yöntemidir. Tam şartlı yoğunluk, fonksiyonlarının tamamından sırayla değişkenlerin üretilmesi esasına dayanmaktadır. Tam şartlı yoğunluk, modelde bütün diğer parametreler verildiğinde bir değişkenin yoğunluğudur. Varyans unsurlarını tahmin probleminde, ilgi duyulan bileşik yoğunluk fonksiyonu, gözlemler verildiğinde sabit etkiler, bileşik etkiler, rassal etkiler veya varyans unsurlarının dağılımıdır ve marjinal yoğunluklar, gözlemler verildiğinde sabit etkiler, bileşik etkiler, rassal etkiler veya varyans unsurlarının dağılımlarıdır. Bu araştırmada, kısıtlanmış maksimum olabilirlik (REML) ve Gibbs örneklemesi yöntemleri kullanılarak 20438 Türk Holstein-Friesian süt sığırı için süt verimine ait genetik ve fenotipik parametrelerin sonsal dağılımlarının tahminleri elde edilmiştir.

References

  • FIRAT, M.Z. (1995), Bayesian Methods in the Selection of Farm Animals for Breeding, Phd Thesis, Edinburg University.
  • FIRAT, M.Z., THEOBALD, C.M., THOMPSON, R. (1997), “Univariate analysis of test day milk yields of British Holstein Friesian heifers using Gibbs sampling”, Acta Agric. Scand., Sect. A, Anim, Sci., 47, 213-220.
  • GELFAND, A.E., SMITH, A.F.M. (1990), “Sampling-based approaches to calculating marginal densities”, Journal of Amer. Statist. Assoc., 85, 398-409.
  • GEMAN, S., GEMAN, D. (1984), “Stochastic relaxation, Gibbs distributions dnd the Bayesian restoration of images”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
  • GIANOLA, D., FERNANDO, R.L. (1986) “Bayesian methods ın animal breeding theory” Journal of Animal Science, 63, 217-244.
  • GIANOLA, D., IM, S., FERNANDO, R.L. FOULLEY, J.L. (1990), “Mixed model methodology and the Box-Cox theory of transformations: a Bayesian approach”. In: Advances in Statistical Methods for the Genetic Improvement of Livestock (Gianola, D. And Hammond, K. eds) Springer-Verlag, Berlin, 210-238.
  • HASTINGS, W.K. (1970), “Monte carlo sampling methods using Markov Chains and their applications”. Biometrika, 57, 97-109.
  • HOBERT, J.P. (1994) Occurences and Consequences of Nonpositive Markov Chains in Gibbs Sampling. Phd Thesis, Cornell University.
  • JENSEN, J., WANG, C.S., SORENSEN, D.A., GIANOLA, D. (1994), “Bayesian inference on variance and covariance components for traits influenced by maternal and direct genetic effects using the Gibbs sampler” Acta Agric. Scand., 44, 193-201.
  • RAFTERY, A.E., LEWIS, S.M. (1992), “How many iterations in the Gibbs sampler?” In Bayesian Statistics 4, Bernardo, J.M. Berger, J.O., David, A.P. and Smith, A.F.M. (eds). Oxford: Clarendon Press, 763-773.
  • WANG, C.S., RUTLEDGE, J.J., GIANOLA, D. (1993), “Marginal inferences about variance components in a mixed linear model using Gibbs Sampling”. Genet. Sel. Evol., 25, 41-62.
  • WANG, C.S., RUTLEDGE, J.J., GIANOLA, D. (1994), “Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size ın iberian pigs”. Genet. Sel. Evol., 26, 91-115.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Statistical Experiment Design, Theory of Sampling
Journal Section Research Articles
Authors

Mehmet Ziya Fırat This is me

Publication Date August 16, 2002
Published in Issue Year 2002 Volume: 1 Issue: 2

Cite

APA Fırat, M. Z. (2002). Gibbs Örneklemesi ile Karışık Doğrusal Bir Modeldeki Varyans Unsurları Hakkında Bayesci Yorumlama. İstatistik Araştırma Dergisi, 1(2), 225-235.