Image Presentation
BibTex RIS Cite

Sismik Tehlikenin Tahmini: Olasılık ve İstatistik Yöntemleri

Year 2013, Volume: 10 Issue: 1, 42 - 57, 15.07.2013

Abstract

Deprem oluşumlarının zaman, yer ve şiddet bakımından gösterdikleri rassallık ve çeşitli belirsizlikler nedeni ile sismik tehlikenin tahmininde olasılık ve istatistik yöntemlerine dayanan bir yaklaşım gereklidir. Ancak bu yöntemler, çoğunlukla, eldeki verilerin ve fiziksel olayların uygulanan stokastik modellere uyumları kontrol edilmeden kullanılmaktadır. Böyle bir yaklaşım hatalı sonuçlara yol açabilmekte, çoğu kez de uygulayıcılar bu durumun farkında olmamaktadır. Deterministik yaklaşımlara karşın, olasılık ve istatistik kuramları çerçevesinde geliştirilen bir yöntemin katkısı, yer hareketi değişkenleri için tek bir değer yerine bir değerler kümesi ile bu küme üzerinde tanımlanmış bir olasılık dağılımının belirlenmesi şeklinde olmaktadır. Bu bildiride sismik tehlike analizinin temelini oluşturan modeller özetlenerek, özellikle aktif faylara ağırlık verilerek geliştirilecek olan sismik tehlike haritalarının oluşturulmasında kullanılacak stokastik modeller üzerinde durulmuş ve yukarıda söz edilen muhtemel hatalı uygulamalara dikkat çekilmiştir.

References

  • Araya, R., Der Kiureghian, A., 1988. Seismic Hazard Analysis: Improved Models, Uncertainties and Sensitivities, EERC Report No. UCB/EERC-90/11, College of Engineering, University of California, Berkeley.
  • Bender, B., 1986. Modeling Source Zone Boundary in Seismic Hazard Analysis, Bull. Seism. Soc. Am., 76(2): 329-341.
  • Bender, B., Perkins, D., 1987. SEISRISK III: A Computer Program for Seismic Hazard Estimation, U.S.G.S. Bulletin 1772.
  • Boore, D. M., Joyner, W. B., 1982. The Empirical Prediction of Ground Motion, Bull. Seism. Soc. Am., 72(6): 43-60.
  • Brillenger, D. R., 1982. Some Bounds for Seismic Risk, Bull. Seism. Soc. Am., 72(4):1403-1410.
  • Castellaro, S., Mulargia, F., Kagan. Y. Y., 2006. Regression Problems for Magnitudes, Geophys J Int, 165: 913-930.
  • Deniz, A. (2006) Estimation of Earthquake Insurance Premium Rates for Turkey, M.Sc. Thesis, Dept. of Civil Engineering, METU.
  • Deniz, A., Yücemen, M. S., 2010. Magnitude Conversion Problem for the Turkish Eartquake Data, Natural Hazards, 55(2): 333-352.
  • Esteva, L., 1970 Seismic Risk and Seismic Design Decisions, in Seismic Design for Nuclear Power Plants, Ed. Hansen, R. J., MIT Press, Cambridge, Mass.
  • Gardner, J. K., Knopoff, L., 1974. Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian?, Bull. Seism. Soc. Am., 64: 1363-1367.
  • Hagiwara, Y., 1974. Probability of Earthquake Occurrence as Obtained from a Weibull Distribution Analysis of Crustal Strain, Tectonophysics, 23(3): 313-318.
  • Kagan, Y. Y., 2002. Aftershock Zone Scaling, Bull. Seism. Soc. Am., 92(2): 641-655.
  • Kameda, H., Ozaki, Y., 1979. A Renewal Process Model for Use In Seismic Risk Analysis, Memoirs of the Faculty of Engineering, Kyoto University, 41: 11-35.
  • Matthews, M. V., Ellsworth, W. L., Reasenberg, P. A., 2002. A Brownian Model for Recurrent Earthquakes, Bull. Seism. Soc. Am., 92(6): 2233-2250.
  • McGuire, R. K., 2004. Seismic Hazard and Risk Analysis, EERI, MNO-10, Oakland, CA.
  • Omori, F., 1894. On the Aftershocks of Earthquakes, Journal of College of Science, Imperial University, Tokyo, 7: 111-200.
  • Prozorov, A. G., Dziewonski, A. M., 1982. A Method of Studying Variations in the Clustering Property of Earthquakes: Application to the Analysis of Global Seismicity, Journal of Geophysical Research, 87(B4): 2829-2839.
  • Reid, H. F., 1910. The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, Carnegie Institution of Washington, Washington, D.C., 2: 16-28.
  • Richter, C. F., 1958. Elementary Seismology, W.H. Freeman and Company, San Francisco.
  • Savage, M. K., Rupp, S. H., 2000. Foreshock Probabilities in New Zealand, New Zealand Journal of Geology and Geophysics, 43: 461-469.
  • Schwartz, D. P., Coppersmith K. J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res. 89: 5681-5698.
  • Stepp, J.C., 1973. Analysis of the Completeness of the Earthquake Sample in the Puget Sound Area, in Contributions to Seismic Zoning, S. T. Handing (Ed.), National Oceanic and Atmospheric Technical Report EERL 267-ESL 30.
  • Ulusay, R., Tuncay, E., Sönmez, H., Gökçeoğlu, C., 2004. An Attenuation Relationship Based on Turkish Strong Motion Data and Iso-Acceleration Map of Turkey, Engineering Geology, 74: 265-291.
  • Utsu, T., Ogata, Y., Matsu’ura, R. S., 1995. The Centenary of the Omori Formula for a Decay Law of Aftershock Activity, Journal of Physics of the Earth, 43: 1-33.
  • Van Dyck, J. F. M., 1985. Statistical Analysis of Earthquake Catalogs, PhD. Thesis, Civil Engineering Department, Massachusetts Institute of Technology, Cambridge.
  • Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area and Surface Displacement, Bull. Seism. Soc. Am., 84(4): 974-1002.
  • Wu, S. C., Cornell, C. A., Winterstein, S. R., 1995. A Hybrid Model and its Implication on Seismic Hazard Results, Bull. Seism. Soc. Am., 85: 1-16.
  • Youngs, R. R., Coppersmith, K. J., 1985. Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates, Bull. Seism. Soc. Am., 75: 939-964.
  • Yücemen, M. S., 1982. Sismik Risk Analizi, Orta Doğu Teknik Üniversitesi, Ankara, 160 s.
  • Yücemen, M. S., Gülkan, P., 1994. Seismic Hazard Analysis with Randomly Located Sources, Natural Hazards, Kluwer Academic Publishers, 9: 215-233.
  • Yücemen, M. S., Akkaya, A. D., 2012. Robust Estimation of Magnitude-Frequency Relationship Parameters, Structural Safety, 38: 32-39.

Estimation of Seismic Hazard: Probabilistic and Statistical Methods

Year 2013, Volume: 10 Issue: 1, 42 - 57, 15.07.2013

Abstract

Considering the aleatory uncertainties related to earthquake occurrences with respect to time, space, magnitude and the additional epistemic uncertainties, probabilistic methods appear to be more appropriate. However, in implementing the probabilistic and statistical methods, engineers very seldom check the validity of the underlying assumptions with respect to the available data. This may lead to serious errors and most often those who apply these methods are unaware of the resulting errors. In this paper, the basic steps for the development of seismic hazard maps are stated together with the necessary background and supporting information for the implementation of these steps. Also attention is drawn to the possible errors committed in utilizing the statistical methods for the assessment of seismic hazard.

References

  • Araya, R., Der Kiureghian, A., 1988. Seismic Hazard Analysis: Improved Models, Uncertainties and Sensitivities, EERC Report No. UCB/EERC-90/11, College of Engineering, University of California, Berkeley.
  • Bender, B., 1986. Modeling Source Zone Boundary in Seismic Hazard Analysis, Bull. Seism. Soc. Am., 76(2): 329-341.
  • Bender, B., Perkins, D., 1987. SEISRISK III: A Computer Program for Seismic Hazard Estimation, U.S.G.S. Bulletin 1772.
  • Boore, D. M., Joyner, W. B., 1982. The Empirical Prediction of Ground Motion, Bull. Seism. Soc. Am., 72(6): 43-60.
  • Brillenger, D. R., 1982. Some Bounds for Seismic Risk, Bull. Seism. Soc. Am., 72(4):1403-1410.
  • Castellaro, S., Mulargia, F., Kagan. Y. Y., 2006. Regression Problems for Magnitudes, Geophys J Int, 165: 913-930.
  • Deniz, A. (2006) Estimation of Earthquake Insurance Premium Rates for Turkey, M.Sc. Thesis, Dept. of Civil Engineering, METU.
  • Deniz, A., Yücemen, M. S., 2010. Magnitude Conversion Problem for the Turkish Eartquake Data, Natural Hazards, 55(2): 333-352.
  • Esteva, L., 1970 Seismic Risk and Seismic Design Decisions, in Seismic Design for Nuclear Power Plants, Ed. Hansen, R. J., MIT Press, Cambridge, Mass.
  • Gardner, J. K., Knopoff, L., 1974. Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian?, Bull. Seism. Soc. Am., 64: 1363-1367.
  • Hagiwara, Y., 1974. Probability of Earthquake Occurrence as Obtained from a Weibull Distribution Analysis of Crustal Strain, Tectonophysics, 23(3): 313-318.
  • Kagan, Y. Y., 2002. Aftershock Zone Scaling, Bull. Seism. Soc. Am., 92(2): 641-655.
  • Kameda, H., Ozaki, Y., 1979. A Renewal Process Model for Use In Seismic Risk Analysis, Memoirs of the Faculty of Engineering, Kyoto University, 41: 11-35.
  • Matthews, M. V., Ellsworth, W. L., Reasenberg, P. A., 2002. A Brownian Model for Recurrent Earthquakes, Bull. Seism. Soc. Am., 92(6): 2233-2250.
  • McGuire, R. K., 2004. Seismic Hazard and Risk Analysis, EERI, MNO-10, Oakland, CA.
  • Omori, F., 1894. On the Aftershocks of Earthquakes, Journal of College of Science, Imperial University, Tokyo, 7: 111-200.
  • Prozorov, A. G., Dziewonski, A. M., 1982. A Method of Studying Variations in the Clustering Property of Earthquakes: Application to the Analysis of Global Seismicity, Journal of Geophysical Research, 87(B4): 2829-2839.
  • Reid, H. F., 1910. The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, Carnegie Institution of Washington, Washington, D.C., 2: 16-28.
  • Richter, C. F., 1958. Elementary Seismology, W.H. Freeman and Company, San Francisco.
  • Savage, M. K., Rupp, S. H., 2000. Foreshock Probabilities in New Zealand, New Zealand Journal of Geology and Geophysics, 43: 461-469.
  • Schwartz, D. P., Coppersmith K. J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res. 89: 5681-5698.
  • Stepp, J.C., 1973. Analysis of the Completeness of the Earthquake Sample in the Puget Sound Area, in Contributions to Seismic Zoning, S. T. Handing (Ed.), National Oceanic and Atmospheric Technical Report EERL 267-ESL 30.
  • Ulusay, R., Tuncay, E., Sönmez, H., Gökçeoğlu, C., 2004. An Attenuation Relationship Based on Turkish Strong Motion Data and Iso-Acceleration Map of Turkey, Engineering Geology, 74: 265-291.
  • Utsu, T., Ogata, Y., Matsu’ura, R. S., 1995. The Centenary of the Omori Formula for a Decay Law of Aftershock Activity, Journal of Physics of the Earth, 43: 1-33.
  • Van Dyck, J. F. M., 1985. Statistical Analysis of Earthquake Catalogs, PhD. Thesis, Civil Engineering Department, Massachusetts Institute of Technology, Cambridge.
  • Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area and Surface Displacement, Bull. Seism. Soc. Am., 84(4): 974-1002.
  • Wu, S. C., Cornell, C. A., Winterstein, S. R., 1995. A Hybrid Model and its Implication on Seismic Hazard Results, Bull. Seism. Soc. Am., 85: 1-16.
  • Youngs, R. R., Coppersmith, K. J., 1985. Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates, Bull. Seism. Soc. Am., 75: 939-964.
  • Yücemen, M. S., 1982. Sismik Risk Analizi, Orta Doğu Teknik Üniversitesi, Ankara, 160 s.
  • Yücemen, M. S., Gülkan, P., 1994. Seismic Hazard Analysis with Randomly Located Sources, Natural Hazards, Kluwer Academic Publishers, 9: 215-233.
  • Yücemen, M. S., Akkaya, A. D., 2012. Robust Estimation of Magnitude-Frequency Relationship Parameters, Structural Safety, 38: 32-39.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Statistical Analysis
Journal Section Research Articles
Authors

Mehmet Semih Yücemen

Publication Date July 15, 2013
Published in Issue Year 2013 Volume: 10 Issue: 1

Cite

APA Yücemen, M. S. (2013). Sismik Tehlikenin Tahmini: Olasılık ve İstatistik Yöntemleri. İstatistik Araştırma Dergisi, 10(1), 42-57.