Research Article
BibTex RIS Cite

Spatial Panel Data Analysis of Determinants of Regional Unemployment in Turkey

Year 2024, Volume: 14 Issue: 2, 1 - 13, 31.12.2024

Abstract

Unemployment is a significant barrier to economic progress and is an important issue that directly affects individuals' quality of life. Imbalances in the labor market, insufficient employment opportunities, and regional disparities lead to fluctuations in the unemployment rate. Therefore, identifying the socio-economic factors affecting unemployment at the regional level is important for developing effective policies in the labor market. This study used spatial panel data models to examine the spatial effects of the unemployment rate and the factors explaining it in Turkey's 26 regions at the NUTS-2 level for the years 2014–2022. The test results identified the spatial error model (SEM) as the appropriate one. Based on its estimation results, we found that the regional growth rate, the number of enterprises, and the increase in the young population reduce regional unemployment, while the increase in university graduates and the poverty rate increase it. It is believed that these results will contribute to the formulation of policies aimed at reducing regional unemployment.

References

  • Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 1–17. https://doi.org/10.1111/j.1538-4632.1988.tb00159.x
  • Anselin, L., Bera, A. K., Florax, R., & Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26(1), 77–104. https://doi.org/10.1016/0166-0462(95)02111-6
  • Aral, N., & Aytaç, M. (2018). Türkiye’de işsizliğin mekânsal analizi. Öneri Dergisi, 13(49), 1-20.
  • Arbia, G. (2006). Spatial Econometrics: Statistical foundations and applications to regional convergence. Springer Science & Business Media.
  • Breusch, T. S., & Pagan, A. R. (1980). The lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253.
  • Bronars, S. G., & Jansen, D. W. (1987). The geographic distribution of unemployment rates in the US: A spatial-time series analysis. Journal of Econometrics, 36, 251–279.
  • Burridge, P. (1980). On the Cliff-Ord test for spatial correlation. Journal of the Royal Statistical Society: Series B (Methodological), 42(1), 107–108. https://doi.org/10.1111/j.2517-6161.1980.tb01108.x
  • Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications. Pion.
  • Cliff, A., & Ord, K. (1972). Testing for spatial autocorrelation among regression residuals. Geographical Analysis, 4(3), 267–284. https://doi.org/10.1111/j.1538-4632.1972.tb00475.x
  • Conley, T. G., & Topa, G. (2002). Socio‐economic distance and spatial patterns in unemployment. Journal of Applied Econometrics, 17(4), 303–327. https://doi.org/10.1002/jae.670
  • Cracolici, M. F., Cuffaro, M., & Nijkamp, P. (2007). Geographical distribution of unemployment: An analysis of orovincial differences in Italy. Growth and Change, 38(4), 649–670. https://doi.org/10.1111/j.1468-2257.2007.00391.x
  • Dönmez, B., & Sugözü, H. İ. (2022). The relationship between unemployment and economic growth under Okun’s Law: A spatial econometric analysis on EU countries. Reforma, 1(93), 35-44.
  • Elhorst, J. P., & Emili, S. (2022). A Spatial econometric multivariate model of Okun’s Law. Regional Science and Urban Economics, 93, 103756. https://doi.org/10.1016/j.regsciurbeco.2021.103756
  • Fischer, M. M., & Wang, J. (2011). Spatial data analysis: models, methods and techniques. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21720-3
  • Hordijk, L. (1974). Spatial correlation in the disturbances of a linear interregional model. Regional and Urban Economics, 4(2), 117–140. https://doi.org/10.1016/0034-3331(74)90025-6
  • Karaalp Orhan, H. S., & Gülel, F. E. (2016). Türkiye’de bölgesel işsizlik: Mekansal panel veri analizi. Sosyal Güvenlik Dergisi, 6(2), 47–67.
  • Kosfeld, R., Dreger, C., & Eckey, H.-F. (2008). On the stability of the German Beveridge Curve: A spatial econometric perspective. The Annals of Regional Science, 42(4), 967–986. https://doi.org/10.1007/s00168-007-0190-y
  • LeSage, J. P., & Pace, R. K. (2009). Introduction to spatial econometrics. Chapman & Hall/CRC.
  • Lopez-Bazo, E., Del Barrio, T., & Artis, M. (2002). The regional distribution of spanish unemployment: A spatial analysis. Papers in Regional Science, 81, 365–389.
  • Luna, X., & Genton, M. G. (2004). Spatio-temporal autoregressive models for US unemployment rate. In Spatial and Spatiotemporal Econometrics (279-294). Emerald Group Publishing Limited.
  • Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), 531-542.
  • Mitchell, W., & Bill, A. (2004). Spatial dependence in regional unemployment in Australia. Working Paper No. 04(11),Australia: Centre of Full Employment and Equity The University of Newcastle.
  • Niebuhr, A. (2002). Spatial dependence of regional unemployment in the European Union (No. 186). HWWA Discussion Paper.
  • Niebuhr, A. (2003). Spatial interaction and regional unemployment in Europe. European Journal of Spatial Developmen, 1(5), 1–26.
  • International Labour Organization(ILO). (1982). Resolution concerning statistics of the economically active population, employment, unemployment and underemployment. Thirteenth International Conference of Labour Statisticians, October 1982.
  • Paelinck, J. (1978). Spatial econometrics. Economics Letters, 1(1), 59–63.
  • Patuelli, R., Griffith, D. A., Tiefelsdorf, M., & Nijkamp, P. (2011). Spatial filtering and eigenvector stability: space-time models for German unemployment data. International Regional Science Review, 34(2), 253–280. https://doi.org/10.1177/0160017610386482
  • Pietrzak, M. B., & Balcerzak, A. P. (2016). A spatial SAR model in evaluating influence of entrepreneurship and investments on unemployment in Poland, Research Working Papers No:2, Institute of Economic Research (IER), Toruń (Poland)
  • Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. In Mathematical Proceedings of the Cambridge Philosophical Society, 44(1), 50-57). Cambridge University Press.
  • Rios, V. (2017). What drives uemployment disparities in European regions? A dynamic spatial panel approach. Regional Studies, 51(11), 1599–1611. https://doi.org/10.1080/00343404.2016.1216094 Türkiye İstatistik Kurumu (TÜİK). (2021). Hanehalkı işgücü araştırması genel açıklama. Erişim adresi: https://data.tuik.gov.tr/
  • Vega, S. H., & Elhorst, J. P. (2016). A reginal unemployment model simultaneously accounting for serial dynamics,spatial dependence and common factors. Regional Science and Urban Economics, 60, 85–95. https://doi.org/10.1016/j.regsciurbeco.2016.07.002
  • Yerdelen Tatoğlu, F. (2020). Panel Veri Ekonometrisi Stata Uygulamalı. Beta Basım Yayım Dağıtım AŞ, İstanbul.
  • Yerdelen Tatoğlu, F. (2022). Mekansal Ekonometri Stata Uygulamalı. Beta Basım Yayım Dağıtım AŞ, İstanbul.

Türkiye’de Bölgesel İşsizliğin Belirleyicilerinin Mekânsal Panel Veri Modelleriyle Analizi

Year 2024, Volume: 14 Issue: 2, 1 - 13, 31.12.2024

Abstract

İşsizlik, ekonomik kalkınmanın önünde büyük bir engel olup, bireylerin yaşam kalitesini doğrudan etkileyen önemli bir sorundur. İşgücü piyasasındaki dengesizlikler, yetersiz istihdam olanakları ve bölgesel farklılıklar, işsizlik oranının dalgalanmasına yol açmaktadır. Bu nedenle, bölgesel düzeyde işsizliği etkileyen sosyo-ekonomik faktörlerin belirlenmesi, işgücü piyasasında etkili politikalar geliştirmek için önemlidir. Bu çalışmada, Türkiye’nin İBBS Düzey 2’deki 26 bölgesi için 2014-2022 yıllarına ait verilerle işsizlik oranında mekânsal etkilerin olup olmadığı ve işsizlik oranını açıklayan faktörler mekânsal panel veri modelleri yardımıyla incelenmiştir. Test sonuçlarına göre, mekânsal hata modeli (SEM) uygun model olarak belirlenmiş ve bu modelin tahmin sonuçlarına göre bölgesel büyüme oranı, girişim sayısı ve genç nüfustaki artışın bölgesel işsizliği azalttığı; diğer yandan üniversite mezun sayısı ve yoksulluk oranındaki artışın işsizlik oranını arttırdığı tespit edilmiştir. Bu sonuçların, bölgesel işsizliği azaltmaya yönelik politikaların belirlenmesinde katkı sunacağı düşünülmektedir.

References

  • Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 1–17. https://doi.org/10.1111/j.1538-4632.1988.tb00159.x
  • Anselin, L., Bera, A. K., Florax, R., & Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26(1), 77–104. https://doi.org/10.1016/0166-0462(95)02111-6
  • Aral, N., & Aytaç, M. (2018). Türkiye’de işsizliğin mekânsal analizi. Öneri Dergisi, 13(49), 1-20.
  • Arbia, G. (2006). Spatial Econometrics: Statistical foundations and applications to regional convergence. Springer Science & Business Media.
  • Breusch, T. S., & Pagan, A. R. (1980). The lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253.
  • Bronars, S. G., & Jansen, D. W. (1987). The geographic distribution of unemployment rates in the US: A spatial-time series analysis. Journal of Econometrics, 36, 251–279.
  • Burridge, P. (1980). On the Cliff-Ord test for spatial correlation. Journal of the Royal Statistical Society: Series B (Methodological), 42(1), 107–108. https://doi.org/10.1111/j.2517-6161.1980.tb01108.x
  • Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications. Pion.
  • Cliff, A., & Ord, K. (1972). Testing for spatial autocorrelation among regression residuals. Geographical Analysis, 4(3), 267–284. https://doi.org/10.1111/j.1538-4632.1972.tb00475.x
  • Conley, T. G., & Topa, G. (2002). Socio‐economic distance and spatial patterns in unemployment. Journal of Applied Econometrics, 17(4), 303–327. https://doi.org/10.1002/jae.670
  • Cracolici, M. F., Cuffaro, M., & Nijkamp, P. (2007). Geographical distribution of unemployment: An analysis of orovincial differences in Italy. Growth and Change, 38(4), 649–670. https://doi.org/10.1111/j.1468-2257.2007.00391.x
  • Dönmez, B., & Sugözü, H. İ. (2022). The relationship between unemployment and economic growth under Okun’s Law: A spatial econometric analysis on EU countries. Reforma, 1(93), 35-44.
  • Elhorst, J. P., & Emili, S. (2022). A Spatial econometric multivariate model of Okun’s Law. Regional Science and Urban Economics, 93, 103756. https://doi.org/10.1016/j.regsciurbeco.2021.103756
  • Fischer, M. M., & Wang, J. (2011). Spatial data analysis: models, methods and techniques. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21720-3
  • Hordijk, L. (1974). Spatial correlation in the disturbances of a linear interregional model. Regional and Urban Economics, 4(2), 117–140. https://doi.org/10.1016/0034-3331(74)90025-6
  • Karaalp Orhan, H. S., & Gülel, F. E. (2016). Türkiye’de bölgesel işsizlik: Mekansal panel veri analizi. Sosyal Güvenlik Dergisi, 6(2), 47–67.
  • Kosfeld, R., Dreger, C., & Eckey, H.-F. (2008). On the stability of the German Beveridge Curve: A spatial econometric perspective. The Annals of Regional Science, 42(4), 967–986. https://doi.org/10.1007/s00168-007-0190-y
  • LeSage, J. P., & Pace, R. K. (2009). Introduction to spatial econometrics. Chapman & Hall/CRC.
  • Lopez-Bazo, E., Del Barrio, T., & Artis, M. (2002). The regional distribution of spanish unemployment: A spatial analysis. Papers in Regional Science, 81, 365–389.
  • Luna, X., & Genton, M. G. (2004). Spatio-temporal autoregressive models for US unemployment rate. In Spatial and Spatiotemporal Econometrics (279-294). Emerald Group Publishing Limited.
  • Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), 531-542.
  • Mitchell, W., & Bill, A. (2004). Spatial dependence in regional unemployment in Australia. Working Paper No. 04(11),Australia: Centre of Full Employment and Equity The University of Newcastle.
  • Niebuhr, A. (2002). Spatial dependence of regional unemployment in the European Union (No. 186). HWWA Discussion Paper.
  • Niebuhr, A. (2003). Spatial interaction and regional unemployment in Europe. European Journal of Spatial Developmen, 1(5), 1–26.
  • International Labour Organization(ILO). (1982). Resolution concerning statistics of the economically active population, employment, unemployment and underemployment. Thirteenth International Conference of Labour Statisticians, October 1982.
  • Paelinck, J. (1978). Spatial econometrics. Economics Letters, 1(1), 59–63.
  • Patuelli, R., Griffith, D. A., Tiefelsdorf, M., & Nijkamp, P. (2011). Spatial filtering and eigenvector stability: space-time models for German unemployment data. International Regional Science Review, 34(2), 253–280. https://doi.org/10.1177/0160017610386482
  • Pietrzak, M. B., & Balcerzak, A. P. (2016). A spatial SAR model in evaluating influence of entrepreneurship and investments on unemployment in Poland, Research Working Papers No:2, Institute of Economic Research (IER), Toruń (Poland)
  • Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. In Mathematical Proceedings of the Cambridge Philosophical Society, 44(1), 50-57). Cambridge University Press.
  • Rios, V. (2017). What drives uemployment disparities in European regions? A dynamic spatial panel approach. Regional Studies, 51(11), 1599–1611. https://doi.org/10.1080/00343404.2016.1216094 Türkiye İstatistik Kurumu (TÜİK). (2021). Hanehalkı işgücü araştırması genel açıklama. Erişim adresi: https://data.tuik.gov.tr/
  • Vega, S. H., & Elhorst, J. P. (2016). A reginal unemployment model simultaneously accounting for serial dynamics,spatial dependence and common factors. Regional Science and Urban Economics, 60, 85–95. https://doi.org/10.1016/j.regsciurbeco.2016.07.002
  • Yerdelen Tatoğlu, F. (2020). Panel Veri Ekonometrisi Stata Uygulamalı. Beta Basım Yayım Dağıtım AŞ, İstanbul.
  • Yerdelen Tatoğlu, F. (2022). Mekansal Ekonometri Stata Uygulamalı. Beta Basım Yayım Dağıtım AŞ, İstanbul.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Panel Data Analysis, Applied Macroeconometrics, Econometrics (Other)
Journal Section Research Articles
Authors

Beyda Demirci 0000-0001-9476-3102

Ferda Yerdelen Tatoğlu 0000-0002-7365-3649

Publication Date December 31, 2024
Submission Date November 21, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Demirci, B., & Yerdelen Tatoğlu, F. (2024). Türkiye’de Bölgesel İşsizliğin Belirleyicilerinin Mekânsal Panel Veri Modelleriyle Analizi. İstatistik Araştırma Dergisi, 14(2), 1-13.