Facilities such as factories and warehouses are now dependent on all the conditions of that region as soon as they are established. A wrong decision can cause problems that last for years. As a result, this selection process, which includes numerous criteria, is critical. In our paper, we demonstrate a study that was conducted to determine the new facility location of a company that manufactures composite rotor blades. To determine criterion weights, an Improved Fuzzy Step-wise Weight Assessment Ratio Analysis (IMF-SWARA) method was used, and Fuzzy Combinative Distance-based Assessment (F-CODAS) methods were utilized to evaluate alternative locations.
Akpınar, M. E. (2022). Machine Selection application in a hard chrome plating industry using fuzzy SWARA and fuzzy ARAS methods. Yönetim ve Ekonomi, 29(1), 107-119. doi: https://doi.org/10.18657/yonveek.848811
Alvand, A., Mirhosseini, S. M., Ehsanifar, M., Zeighami, E. & Mohammadi, A. (2021). Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran. International Journal of Construction Management, 1-13. doi: https://doi.org/10.1080/15623599.2021.1877875
Ansari, Z. N., Kant, R. & Shankar, R. (2020). Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. International Journal of Sustainable Engineering, 13(6), 473-494. doi: https://doi.org/10.1080/19397038.2020.1758973
Ar, İ. M., Baki, B. ve Özdemir, F. (2014). Kuruluş yeri seçiminde bulanık AHS-VIKOR yaklaşımının kullanımı: Otel sektöründe bir uygulama. Uluslararası İktisadi ve İdari İncelemeler Dergisi, (13), 93-114. doi: https://doi.org/10.18092/ijeas.07453
Aro, J. L., Selerio Jr, E., Evangelista, S. S., Maturan, F., Atibing, N. M., & Ocampo, L. (2022). Fermatean fuzzy CRITIC-CODAS-SORT for characterizing the challenges of circular public sector supply chains. Operations Research Perspectives, 9, 100246. doi: https://doi.org/10.1016/j.orp.2022.100246
Arslan, H. M., Durak, İ. ve Özdemir, Y. (2021). Entropi-Aras hibrit yöntemi ile bilişim işletmeleri için en uygun teknopark bölgesinin belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 17(3), 734-753. doi: https://doi.org/10.17130/ijmeb.839584
Asori, M., Dogbey, E., Morgan, A. K., Ampofo, S. T., Mpobi, R. K. J., & Katey, D. (2022). Application of GIS-based multi-criteria decision making analysis (GIS-MCDA) in selecting locations most suitable for siting engineered landfills–the case of Ashanti Region, Ghana. Management of Environmental Quality: An International Journal, 33 (3), 800-826. doi: https://doi.org/10.1108/MEQ-07-2021-0159
Aydınoğlu, A. Ç., Şişman, S. ve Ergül, İ. (2022). Sezgisel ağ tabanlı konum tahsis analiz algoritmaları ile tesis yeri optimizasyonu: İtfaiye tesisleri yer seçimi örneği. Journal of Turkish Operations Management, 6(1), 955-976.
Aytekin, A. (2018). Using hybrid method in selecting timber factory location. Drvna Industrija, 69(3), 273-281. doi: https://doi.org/10.5552/drind.2018.1736
Cedolin, M., Göker, N., Dogu, E., & Esra Albayrak, Y. (2017). Facility location selection employing fuzzy DEA and fuzzy goal programming techniques. In Advances in Fuzzy Logic and Technology 2017 (pp. 466-476). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-66830-7_42
Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139-153. doi: 10.1016/j.jenvman.2007.01.011
Chakraborty, S., Kumar, R. & Athawale, V. M. (2010). Facility location selection using the UTA method. The IUP Journal of Operations Management, 9(4), 21-34. Retrieved from https://ssrn.com/abstract=1744706
Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9. doi: https://doi.org/10.1016/S0165-0114(97)00377-1
Chithambaranathan, P., Rajkumar, A., Prithiviraj, D., & Palpandi, M. (2022). A multi criteria decision based approach for facility location selection with flexible criteria weights. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2022.04.467
Chou, T. Y., Hsu, C. L., & Chen, M. C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International journal of hospitality management, 27(2), 293-301. Doi: 10.1016/j.ijhm.2007.07.029
Dağ, S. ve Önder, E. (2013). Decision-making for facility location using VIKOR method. Journal of International Scientific Publication: Economy & Business, 7(1), 308-330. Retrieved from https://ssrn.com/abstract=2382495
Deveci, M., Simic, V., & Torkayesh, A. E. (2021). Remanufacturing facility location for automotive Lithium-ion batteries: An integrated neutrosophic decision-making model. Journal of Cleaner Production, 317, 128438. doi: https://doi.org/10.1016/j.jclepro.2021.128438
Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016). Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineering Management, 11(4), 262-278. doi: https://doi.org/10.1080/17509653.2015.1086964
Durak, İ., Arslan, H. M. ve Özdemir, Y. (2022). Application of AHP–TOPSIS methods in technopark selection of technology companies: Turkish case. Technology Analysis & Strategic Management, 34(10), 1109-1123. doi: https://doi.org/10.1080/09537325.2021.1925242
Effatpanah, S. K., Ahmadi, M. H., Aungkulanon, P., Maleki, A., Sadeghzadeh, M., Sharifpur, M., & Chen, L. (2022). Comparative analysis of five widely-used multi-criteria decision-making methods to evaluate clean energy technologies: a case study. Sustainability, 14(3), 1403. https://doi.org/10.3390/su14031403
Ertuğrul, İ., & Karakaşoğlu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. The International Journal of Advanced Manufacturing Technology, 39(7), 783-795. doi: https://doi.org/10.1007/s00170-007-1249-8
Feng, J., Xu, S. X., Xu, G., & Cheng, H. (2022). An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles. Transportation Research Part E: Logistics and Transportation Review, 157, 102569. doi: https://doi.org/10.1016/j.tre.2021.102569
Gao, Z., Yoshimoto, K., & Ohmori, S. (2010). Application of AHP/DEA to facility layout selection. In 2010 Third International Joint Conference on Computational Science and Optimization, China (Vol. 2, pp. 252-254). IEEE.
Ghasemian Sahebi, I., Arab, A., & Toufighi, S. P. (2020). Analyzing the barriers of organizational transformation by using fuzzy SWARA. Journal of Fuzzy Extension and Applications, 1(2), 84-97. doi: https://doi.org/10.22105/jfea.2020.249191.1010
Ghorabaee, M. K., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25-44. Retrieved from https://eds.p.ebscohost.com/eds/ pdfviewer/pdfviewer?vid=0&sid=f2b23750-01d9-4c63-a3d0-f2178fa19221%40redis
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antuchevičienė, J. (2017). Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. Journal of Business Economics and Management, 18(1), 1-19. doi: https://doi.org/10.3846/16111699.2016.1278559
Gorcun, O. F., Senthil, S., & Küçükönder, H. (2021). Evaluation of tanker vehicle selection using a novel hybrid fuzzy MCDM technique. Decision Making: Applications in Management and Engineering, 4(2), 140-162. doi:
https://doi.org/10.31181/dmame210402140g
Görçün, Ö. F., Zolfani, S. H., & Çanakçıoğlu, M. (2022). Analysis of efficiency and performance of global retail supply chains using integrated fuzzy SWARA and fuzzy EATWOS methods. Operations Management Research, 1-25. doi: https://doi.org/10.1007/s12063-022-00261-z
Güneş, M. (2019). KOBİ’ler için girişimcilik. İstanbul: Türkmen Kitabevi.
Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus, 5(1), 1-30. doi: https://doi.org/10.1186/s40064-016-2131-7
Maghsoodi, A.I, Maghsoodi, A.I, Poursoltan, P., Antucheviciene, J., & Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA—CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19(4), 1194-1210. doi: http://dx.doi.org/10.1016 /j.acme.2019.06.010
Kabadayı, N. ve Esen, T. E. Ç. (2021). Gri İlişkisel temelli TOPSIS yöntemi ile depo yeri seçimi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(1), 169-184. doi: https://doi.org/10.18506/anemon.761624
Karagoz, S., Deveci, M., Simic, V., Aydin, N., & Bolukbas, U. (2020). A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: a case study of Istanbul. Waste Management & Research, 38(6), 660-672. doi: https://doi.org/10.1177/0734242X19899729
Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling facility location problems. Applied Soft Computing, 102, 107107. doi: https://doi.org/10.1016/j.asoc.2021.107107
Karaşan, A., Kaya, İ., & Erdoğan, M. (2020). Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553-4574. doi: https://doi.org/10.1007/s00521-018-3752-2
Kannan, D., Moazzeni, S., Mostafayi Darmian, S., & Afrasiabi, A. (2021). A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainale evaluation of potential solar sites in east of Iran. Journal of Cleaner Production, 279, 122368. doi: https://doi.org/10.1016/j.jclepro.2020.122368
Karande, P., & Chatterjee, P. (2018). Desirability function approach for selection of facility location: A case study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France (pp. 1700-1708).
Kaul, A., Darbari, J. D., & Jha, P. C. (2020). A fuzzy MCDM model for facility location evaluation based on quality of life. In Soft Computing for Problem Solving (pp. 687-697). Springer, Singapore. doi: https://doi.org/10.1007/978-981-15-0035-0_56
Katrancı, A. ve Kundakcı, N. (2020). Bulanık CODAS yöntemi ile kripto para yatırım alternatiflerinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 22(4), doi: 958-973. https://doi.org/10.32709/akusosbil.599757
Keleş, M. K., Özdağoğlu, A. ve Işıldak, B. (2021). Yolcular Açısından Havalimanlarının Değerlendirilmesine Yönelik Çok Kriterli Karar Verme Yöntemleriyle Bir Uygulama. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23(2), 419-456. Erişim adresi: https://dergipark.org.tr/en/pub /ahbvuibfd/issue/64683/795201
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi: https://doi.org/10.3846/jbem.2010.12
Kieu, P. T., Nguyen, V. T., Nguyen, V. T., & Ho, T. P. (2021). A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms, 10(2), 53. doi: https://doi.org/10.3390/axioms10020053
Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2010). Operations management: Processes and supply chains. 9th Edition, New Jersey: Pearson. Çeviri Editörü: Semra Birgün, Nobel Yayınları, Ankara
Kumar, K., & Kumanan, S. (2011). An Integrated Fuzzy QFD and AHP Approach for Facility Location Selection. IUP Journal of Supply Chain Management, 8(4), 30-41. Retrieved from https://ssrn.com/abstract=2138805
Kuo, M. S., & Liang, G. S. (2011). A novel hybrid decision-making model for selecting locations in a fuzzy environment. Mathematical and Computer Modelling, 54(1-2), 88-104. doi: https://doi.org/10.1016/j.mcm.2011.01.038
Liu, Z., Huang, R., & Shao, S. (2022). Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment. AIMS Mathematics, 7(7), 13292-13312. https://doi.org/10.3934/math.2022734
Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5), 2401-2418. doi: https://doi.org/10.1007/s00170-016-9880-x
Miç, P., & Antmen, Z. F. (2021). A Decision-making model based on TOPSIS, WASPAS, and MULTIMOORA methods for university location selection Problem. SAGE Open, 11(3), 21582440211040115. doi: https://doi.org/10.1177/21582440211040115
Moniri, M. R., Tabriz, A. A., Ayough, A., & Zandieh, M. (2021). Turnaround project risk assessment using hybrid fuzzy SWARA and EDAS method: case of upstream oil process industries in Iran. Journal of Engineering, Design and Technology, 19(4), 966-988, doi: https://doi.org/10.1108/JEDT-07-2020-0287
Mucuk, İ. (2018). Modern işletmecilik (21. Baskı). İstanbul: Türkmen Kitabevi.
Nacar, E. N. ve Erdebilli, B. (2021). Tesis yeri seçimine yeni bir bakış: katmanlı çok kriterli karar verme yöntemi. Verimlilik Dergisi, (4), 103-117. doi: https://doi.org/10.51551/verimlilik.832480
Nong, T. N. M. (2022). A hybrid model for distribution center location selection. The Asian Journal of Shipping and Logistics, 38(1), 40-49. doi: https://doi.org/10.1016/j.ajsl.2021.10.003
Özbek, A. (2019). Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 2. Baskı, Ankara: Seçkin Yayıncılık. ISBN:9789750245138
Panchal, D., Chatterjee, P., Shukla, R. K., Choudhury, T. & Tamosaitiene, J. (2017). Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry. Economic Computation and Economic Cybernetics Studies and Research, 3(51), 179-196. Retrieved from https://ideas.repec.org/a/cys/ecocyb /v50y2017i3p179-196.html
Pourrezaie-Khaligh, P., Bozorgi-Amiri, A., Yousefi-Babadi, A., & Moon, I. (2022).: A case study. Applied Mathematical Modelling, 102, 243-267. doi: https://doi.org/10.1016/j.apm.2021.09.022
Rahman, M. S., Ali, M. I., Hossain, U., & Mondal, T. K. (2018). Facility location selection for plastic manufacturing industry in Bangladesh by using AHP method. International Journal of Research in Industrial Engineering, 7(3), 307-319. doi:https://doi.org/10.22105/riej.2018.135742.1049
Seker, S., & Aydin, N. (2020). Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy, 45(32), 15855-15868. doi: https://doi.org/10.1016/j.ijhydene.2019.12.183
Sennaroglu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173.doi: https://doi.org/10.1016/j.trd.2017.12.022
Simic, V., Karagoz, S., Deveci, M., & Aydin, N. (2021). Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location. Expert Systems with Applications, 175, 114644. doi: https://doi.org/10.1016/j.eswa.2021.114644
Singh, S., Upadhyay, S. P., & Powar, S. (2022). Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods. Applied Energy, 308, 118235. doi: https://doi.org/10.1016/j.apenergy.2021.118235
Soyşekerci, S. ve Erturgut, R. (2011). Genel işletme. İstanbul: Kriter Yayınları.
Steyn, J. & Buys, C. (2017). Project optimisation techniques: Site selection for process plants, Owner Team Consulatation, Retrieved from https://www.ownerteamconsult.com/site-selection-for-process-plants/
Suman, M. N. H., MD Sarfaraj, N., Chyon, F. A., & Fahim, M. R. I. (2021). Facility location selection for the furniture industry of Bangladesh: Comparative AHP and FAHP analysis. International Journal of Engineering Business Management, 13, 18479790211030851. doi: https://doi.org/10.1177/18479790211030851
Terme, B., Çiçek, İ., & Kiraz, A. Entegre Bulanık AHP ve Bulanık VIKOR Yöntemleriyle Tesis Yeri Seçimi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 383-398. doi: https://doi.org/10.21605/ cukurovaumfd.1146098
Torkayesh, A. E., & Simic, V. (2022). Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste. Sustainable Cities and Society, 77, 103543. doi: https://doi.org/10.1016/j.scs.2021.103543
Tripathi, A. K., Agrawal, S., & Gupta, R. D. (2021). Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India. GeoJournal, 1-22. doi: https://doi.org/10.1007/s10708-021-10445-y
Tuzkaya, G., Önüt, S., Tuzkaya, U. R., & Gülsün, B. (2008). An analytic network process approach for locating undesirable facilities: An example from Istanbul, Turkey. Journal of Environmental Management, 88(4), 970-983. doi: https://doi.org/10.1016/j.jenvman.2007.05.004
Türk, A., & Özkök, M. (2020). Shipyard location selection based on fuzzy AHP and TOPSIS. Journal of Intelligent & Fuzzy Systems, 39(3), 4557-4576. doi: https://doi.org/10.3233/JIFS-200522
Ulutaş, A. (2020). SWARA tabanlı CODAS Yöntemi ile kargo şirketi seçimi. MANAS Sosyal Araştırmalar Dergisi, 9(3), 1640-1647. doi: https://doi.org/10.33206/mjss.559351
Vojinović, N., Stević, Ž., & Tanackov, I. (2022). A Novel IMF SWARA-FDWGA-PESTEL analysis for assessment of healthcare system. Operational Research in Engineering Sciences: Theory and Applications, 5(1), 139-151. doi: https://doi.org/10.31181/oresta070422211v
Vrtagić, S., Softić, E., Subotić, M., Stević, Ž., Dordevic, M., & Ponjavic, M. (2021). Ranking road sections based on MCDM model: New ımproved Fuzzy SWARA (IMF SWARA). Axioms, 10(2), 92. doi: https://doi.org/10.3390/axioms10020092
Wang, C. N., Huang, Y. F., Chai, Y. C., & Nguyen, V. T. (2018). A multi-criteria decision making (MCDM) for renewable energy plants location selection in Vietnam under a fuzzy environment. Applied Sciences, 8(11), 2069. doi: https://doi.org/10.3390/app8112069
Xuan, H. A., Trinh, V. V., Techato, K., & Phoungthong, K. (2022). Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustainable Energy Technologies and Assessments, 52, 101979. doi: https://doi.org/10.1016/j.seta.2022.101979
Yalçın, N., & Yapıcı Pehlivan, N. (2019). Application of the fuzzy CODAS method based on fuzzy envelopes for hesitant fuzzy linguistic term sets: A case study on a personnel selection problem. Symmetry, 11(4), 493,1-27. https://doi.org/10.3390/sym11040493
Yaşlıoğlu, M. M. ve Önder, E. (2016). Solving facility location problem for a plastic goods manufacturing company in turkey using AHP and TOPSIS methods. Yönetim Bilimleri Dergisi, 14(28), 223-249. Retrieved from https://dergipark.org.tr/en/download/article-file/660898
Yenilmezel, S. ve Ertuğrul, İ. (2022). Çok kriterli karar verme yöntemleri ile bir mermer fabrikası için kesintisiz güç kaynağı seçimi. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(3), 251-266. doi: 10.52791/aksarayiibd.1009308
Yeşilkaya, M. (2018). Çok Ölçütlü Karar Verme Yöntemleri ile Kağıt Fabrikası Kuruluş Yeri Seçimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 31-44. doi: https://doi.org/10.21605/ cukurovaummfd.521775
Yong, D. (2006). Plant location selection based on fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 28(7), 839-844. doi: https://doi.org/10.1007/s00170-004-2436-5
Yücenur, G. N., Çaylak, Ş., Gönül, G., & Postalcıoğlu, M. (2020). An integrated solution with SWARA&COPRAS methods in renewable energy production: City selection for biogas facility. Renewable Energy, 145, 2587-2597. doi: https://doi.org/10.1016/j.renene.2019.08.011
Akpınar, M. E. (2022). Machine Selection application in a hard chrome plating industry using fuzzy SWARA and fuzzy ARAS methods. Yönetim ve Ekonomi, 29(1), 107-119. doi: https://doi.org/10.18657/yonveek.848811
Alvand, A., Mirhosseini, S. M., Ehsanifar, M., Zeighami, E. & Mohammadi, A. (2021). Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran. International Journal of Construction Management, 1-13. doi: https://doi.org/10.1080/15623599.2021.1877875
Ansari, Z. N., Kant, R. & Shankar, R. (2020). Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. International Journal of Sustainable Engineering, 13(6), 473-494. doi: https://doi.org/10.1080/19397038.2020.1758973
Ar, İ. M., Baki, B. ve Özdemir, F. (2014). Kuruluş yeri seçiminde bulanık AHS-VIKOR yaklaşımının kullanımı: Otel sektöründe bir uygulama. Uluslararası İktisadi ve İdari İncelemeler Dergisi, (13), 93-114. doi: https://doi.org/10.18092/ijeas.07453
Aro, J. L., Selerio Jr, E., Evangelista, S. S., Maturan, F., Atibing, N. M., & Ocampo, L. (2022). Fermatean fuzzy CRITIC-CODAS-SORT for characterizing the challenges of circular public sector supply chains. Operations Research Perspectives, 9, 100246. doi: https://doi.org/10.1016/j.orp.2022.100246
Arslan, H. M., Durak, İ. ve Özdemir, Y. (2021). Entropi-Aras hibrit yöntemi ile bilişim işletmeleri için en uygun teknopark bölgesinin belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 17(3), 734-753. doi: https://doi.org/10.17130/ijmeb.839584
Asori, M., Dogbey, E., Morgan, A. K., Ampofo, S. T., Mpobi, R. K. J., & Katey, D. (2022). Application of GIS-based multi-criteria decision making analysis (GIS-MCDA) in selecting locations most suitable for siting engineered landfills–the case of Ashanti Region, Ghana. Management of Environmental Quality: An International Journal, 33 (3), 800-826. doi: https://doi.org/10.1108/MEQ-07-2021-0159
Aydınoğlu, A. Ç., Şişman, S. ve Ergül, İ. (2022). Sezgisel ağ tabanlı konum tahsis analiz algoritmaları ile tesis yeri optimizasyonu: İtfaiye tesisleri yer seçimi örneği. Journal of Turkish Operations Management, 6(1), 955-976.
Aytekin, A. (2018). Using hybrid method in selecting timber factory location. Drvna Industrija, 69(3), 273-281. doi: https://doi.org/10.5552/drind.2018.1736
Cedolin, M., Göker, N., Dogu, E., & Esra Albayrak, Y. (2017). Facility location selection employing fuzzy DEA and fuzzy goal programming techniques. In Advances in Fuzzy Logic and Technology 2017 (pp. 466-476). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-66830-7_42
Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139-153. doi: 10.1016/j.jenvman.2007.01.011
Chakraborty, S., Kumar, R. & Athawale, V. M. (2010). Facility location selection using the UTA method. The IUP Journal of Operations Management, 9(4), 21-34. Retrieved from https://ssrn.com/abstract=1744706
Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9. doi: https://doi.org/10.1016/S0165-0114(97)00377-1
Chithambaranathan, P., Rajkumar, A., Prithiviraj, D., & Palpandi, M. (2022). A multi criteria decision based approach for facility location selection with flexible criteria weights. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2022.04.467
Chou, T. Y., Hsu, C. L., & Chen, M. C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International journal of hospitality management, 27(2), 293-301. Doi: 10.1016/j.ijhm.2007.07.029
Dağ, S. ve Önder, E. (2013). Decision-making for facility location using VIKOR method. Journal of International Scientific Publication: Economy & Business, 7(1), 308-330. Retrieved from https://ssrn.com/abstract=2382495
Deveci, M., Simic, V., & Torkayesh, A. E. (2021). Remanufacturing facility location for automotive Lithium-ion batteries: An integrated neutrosophic decision-making model. Journal of Cleaner Production, 317, 128438. doi: https://doi.org/10.1016/j.jclepro.2021.128438
Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016). Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineering Management, 11(4), 262-278. doi: https://doi.org/10.1080/17509653.2015.1086964
Durak, İ., Arslan, H. M. ve Özdemir, Y. (2022). Application of AHP–TOPSIS methods in technopark selection of technology companies: Turkish case. Technology Analysis & Strategic Management, 34(10), 1109-1123. doi: https://doi.org/10.1080/09537325.2021.1925242
Effatpanah, S. K., Ahmadi, M. H., Aungkulanon, P., Maleki, A., Sadeghzadeh, M., Sharifpur, M., & Chen, L. (2022). Comparative analysis of five widely-used multi-criteria decision-making methods to evaluate clean energy technologies: a case study. Sustainability, 14(3), 1403. https://doi.org/10.3390/su14031403
Ertuğrul, İ., & Karakaşoğlu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. The International Journal of Advanced Manufacturing Technology, 39(7), 783-795. doi: https://doi.org/10.1007/s00170-007-1249-8
Feng, J., Xu, S. X., Xu, G., & Cheng, H. (2022). An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles. Transportation Research Part E: Logistics and Transportation Review, 157, 102569. doi: https://doi.org/10.1016/j.tre.2021.102569
Gao, Z., Yoshimoto, K., & Ohmori, S. (2010). Application of AHP/DEA to facility layout selection. In 2010 Third International Joint Conference on Computational Science and Optimization, China (Vol. 2, pp. 252-254). IEEE.
Ghasemian Sahebi, I., Arab, A., & Toufighi, S. P. (2020). Analyzing the barriers of organizational transformation by using fuzzy SWARA. Journal of Fuzzy Extension and Applications, 1(2), 84-97. doi: https://doi.org/10.22105/jfea.2020.249191.1010
Ghorabaee, M. K., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25-44. Retrieved from https://eds.p.ebscohost.com/eds/ pdfviewer/pdfviewer?vid=0&sid=f2b23750-01d9-4c63-a3d0-f2178fa19221%40redis
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antuchevičienė, J. (2017). Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. Journal of Business Economics and Management, 18(1), 1-19. doi: https://doi.org/10.3846/16111699.2016.1278559
Gorcun, O. F., Senthil, S., & Küçükönder, H. (2021). Evaluation of tanker vehicle selection using a novel hybrid fuzzy MCDM technique. Decision Making: Applications in Management and Engineering, 4(2), 140-162. doi:
https://doi.org/10.31181/dmame210402140g
Görçün, Ö. F., Zolfani, S. H., & Çanakçıoğlu, M. (2022). Analysis of efficiency and performance of global retail supply chains using integrated fuzzy SWARA and fuzzy EATWOS methods. Operations Management Research, 1-25. doi: https://doi.org/10.1007/s12063-022-00261-z
Güneş, M. (2019). KOBİ’ler için girişimcilik. İstanbul: Türkmen Kitabevi.
Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus, 5(1), 1-30. doi: https://doi.org/10.1186/s40064-016-2131-7
Maghsoodi, A.I, Maghsoodi, A.I, Poursoltan, P., Antucheviciene, J., & Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA—CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19(4), 1194-1210. doi: http://dx.doi.org/10.1016 /j.acme.2019.06.010
Kabadayı, N. ve Esen, T. E. Ç. (2021). Gri İlişkisel temelli TOPSIS yöntemi ile depo yeri seçimi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(1), 169-184. doi: https://doi.org/10.18506/anemon.761624
Karagoz, S., Deveci, M., Simic, V., Aydin, N., & Bolukbas, U. (2020). A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: a case study of Istanbul. Waste Management & Research, 38(6), 660-672. doi: https://doi.org/10.1177/0734242X19899729
Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling facility location problems. Applied Soft Computing, 102, 107107. doi: https://doi.org/10.1016/j.asoc.2021.107107
Karaşan, A., Kaya, İ., & Erdoğan, M. (2020). Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553-4574. doi: https://doi.org/10.1007/s00521-018-3752-2
Kannan, D., Moazzeni, S., Mostafayi Darmian, S., & Afrasiabi, A. (2021). A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainale evaluation of potential solar sites in east of Iran. Journal of Cleaner Production, 279, 122368. doi: https://doi.org/10.1016/j.jclepro.2020.122368
Karande, P., & Chatterjee, P. (2018). Desirability function approach for selection of facility location: A case study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France (pp. 1700-1708).
Kaul, A., Darbari, J. D., & Jha, P. C. (2020). A fuzzy MCDM model for facility location evaluation based on quality of life. In Soft Computing for Problem Solving (pp. 687-697). Springer, Singapore. doi: https://doi.org/10.1007/978-981-15-0035-0_56
Katrancı, A. ve Kundakcı, N. (2020). Bulanık CODAS yöntemi ile kripto para yatırım alternatiflerinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 22(4), doi: 958-973. https://doi.org/10.32709/akusosbil.599757
Keleş, M. K., Özdağoğlu, A. ve Işıldak, B. (2021). Yolcular Açısından Havalimanlarının Değerlendirilmesine Yönelik Çok Kriterli Karar Verme Yöntemleriyle Bir Uygulama. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23(2), 419-456. Erişim adresi: https://dergipark.org.tr/en/pub /ahbvuibfd/issue/64683/795201
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi: https://doi.org/10.3846/jbem.2010.12
Kieu, P. T., Nguyen, V. T., Nguyen, V. T., & Ho, T. P. (2021). A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms, 10(2), 53. doi: https://doi.org/10.3390/axioms10020053
Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2010). Operations management: Processes and supply chains. 9th Edition, New Jersey: Pearson. Çeviri Editörü: Semra Birgün, Nobel Yayınları, Ankara
Kumar, K., & Kumanan, S. (2011). An Integrated Fuzzy QFD and AHP Approach for Facility Location Selection. IUP Journal of Supply Chain Management, 8(4), 30-41. Retrieved from https://ssrn.com/abstract=2138805
Kuo, M. S., & Liang, G. S. (2011). A novel hybrid decision-making model for selecting locations in a fuzzy environment. Mathematical and Computer Modelling, 54(1-2), 88-104. doi: https://doi.org/10.1016/j.mcm.2011.01.038
Liu, Z., Huang, R., & Shao, S. (2022). Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment. AIMS Mathematics, 7(7), 13292-13312. https://doi.org/10.3934/math.2022734
Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5), 2401-2418. doi: https://doi.org/10.1007/s00170-016-9880-x
Miç, P., & Antmen, Z. F. (2021). A Decision-making model based on TOPSIS, WASPAS, and MULTIMOORA methods for university location selection Problem. SAGE Open, 11(3), 21582440211040115. doi: https://doi.org/10.1177/21582440211040115
Moniri, M. R., Tabriz, A. A., Ayough, A., & Zandieh, M. (2021). Turnaround project risk assessment using hybrid fuzzy SWARA and EDAS method: case of upstream oil process industries in Iran. Journal of Engineering, Design and Technology, 19(4), 966-988, doi: https://doi.org/10.1108/JEDT-07-2020-0287
Mucuk, İ. (2018). Modern işletmecilik (21. Baskı). İstanbul: Türkmen Kitabevi.
Nacar, E. N. ve Erdebilli, B. (2021). Tesis yeri seçimine yeni bir bakış: katmanlı çok kriterli karar verme yöntemi. Verimlilik Dergisi, (4), 103-117. doi: https://doi.org/10.51551/verimlilik.832480
Nong, T. N. M. (2022). A hybrid model for distribution center location selection. The Asian Journal of Shipping and Logistics, 38(1), 40-49. doi: https://doi.org/10.1016/j.ajsl.2021.10.003
Özbek, A. (2019). Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 2. Baskı, Ankara: Seçkin Yayıncılık. ISBN:9789750245138
Panchal, D., Chatterjee, P., Shukla, R. K., Choudhury, T. & Tamosaitiene, J. (2017). Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry. Economic Computation and Economic Cybernetics Studies and Research, 3(51), 179-196. Retrieved from https://ideas.repec.org/a/cys/ecocyb /v50y2017i3p179-196.html
Pourrezaie-Khaligh, P., Bozorgi-Amiri, A., Yousefi-Babadi, A., & Moon, I. (2022).: A case study. Applied Mathematical Modelling, 102, 243-267. doi: https://doi.org/10.1016/j.apm.2021.09.022
Rahman, M. S., Ali, M. I., Hossain, U., & Mondal, T. K. (2018). Facility location selection for plastic manufacturing industry in Bangladesh by using AHP method. International Journal of Research in Industrial Engineering, 7(3), 307-319. doi:https://doi.org/10.22105/riej.2018.135742.1049
Seker, S., & Aydin, N. (2020). Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy, 45(32), 15855-15868. doi: https://doi.org/10.1016/j.ijhydene.2019.12.183
Sennaroglu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173.doi: https://doi.org/10.1016/j.trd.2017.12.022
Simic, V., Karagoz, S., Deveci, M., & Aydin, N. (2021). Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location. Expert Systems with Applications, 175, 114644. doi: https://doi.org/10.1016/j.eswa.2021.114644
Singh, S., Upadhyay, S. P., & Powar, S. (2022). Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods. Applied Energy, 308, 118235. doi: https://doi.org/10.1016/j.apenergy.2021.118235
Soyşekerci, S. ve Erturgut, R. (2011). Genel işletme. İstanbul: Kriter Yayınları.
Steyn, J. & Buys, C. (2017). Project optimisation techniques: Site selection for process plants, Owner Team Consulatation, Retrieved from https://www.ownerteamconsult.com/site-selection-for-process-plants/
Suman, M. N. H., MD Sarfaraj, N., Chyon, F. A., & Fahim, M. R. I. (2021). Facility location selection for the furniture industry of Bangladesh: Comparative AHP and FAHP analysis. International Journal of Engineering Business Management, 13, 18479790211030851. doi: https://doi.org/10.1177/18479790211030851
Terme, B., Çiçek, İ., & Kiraz, A. Entegre Bulanık AHP ve Bulanık VIKOR Yöntemleriyle Tesis Yeri Seçimi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 383-398. doi: https://doi.org/10.21605/ cukurovaumfd.1146098
Torkayesh, A. E., & Simic, V. (2022). Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste. Sustainable Cities and Society, 77, 103543. doi: https://doi.org/10.1016/j.scs.2021.103543
Tripathi, A. K., Agrawal, S., & Gupta, R. D. (2021). Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India. GeoJournal, 1-22. doi: https://doi.org/10.1007/s10708-021-10445-y
Tuzkaya, G., Önüt, S., Tuzkaya, U. R., & Gülsün, B. (2008). An analytic network process approach for locating undesirable facilities: An example from Istanbul, Turkey. Journal of Environmental Management, 88(4), 970-983. doi: https://doi.org/10.1016/j.jenvman.2007.05.004
Türk, A., & Özkök, M. (2020). Shipyard location selection based on fuzzy AHP and TOPSIS. Journal of Intelligent & Fuzzy Systems, 39(3), 4557-4576. doi: https://doi.org/10.3233/JIFS-200522
Ulutaş, A. (2020). SWARA tabanlı CODAS Yöntemi ile kargo şirketi seçimi. MANAS Sosyal Araştırmalar Dergisi, 9(3), 1640-1647. doi: https://doi.org/10.33206/mjss.559351
Vojinović, N., Stević, Ž., & Tanackov, I. (2022). A Novel IMF SWARA-FDWGA-PESTEL analysis for assessment of healthcare system. Operational Research in Engineering Sciences: Theory and Applications, 5(1), 139-151. doi: https://doi.org/10.31181/oresta070422211v
Vrtagić, S., Softić, E., Subotić, M., Stević, Ž., Dordevic, M., & Ponjavic, M. (2021). Ranking road sections based on MCDM model: New ımproved Fuzzy SWARA (IMF SWARA). Axioms, 10(2), 92. doi: https://doi.org/10.3390/axioms10020092
Wang, C. N., Huang, Y. F., Chai, Y. C., & Nguyen, V. T. (2018). A multi-criteria decision making (MCDM) for renewable energy plants location selection in Vietnam under a fuzzy environment. Applied Sciences, 8(11), 2069. doi: https://doi.org/10.3390/app8112069
Xuan, H. A., Trinh, V. V., Techato, K., & Phoungthong, K. (2022). Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustainable Energy Technologies and Assessments, 52, 101979. doi: https://doi.org/10.1016/j.seta.2022.101979
Yalçın, N., & Yapıcı Pehlivan, N. (2019). Application of the fuzzy CODAS method based on fuzzy envelopes for hesitant fuzzy linguistic term sets: A case study on a personnel selection problem. Symmetry, 11(4), 493,1-27. https://doi.org/10.3390/sym11040493
Yaşlıoğlu, M. M. ve Önder, E. (2016). Solving facility location problem for a plastic goods manufacturing company in turkey using AHP and TOPSIS methods. Yönetim Bilimleri Dergisi, 14(28), 223-249. Retrieved from https://dergipark.org.tr/en/download/article-file/660898
Yenilmezel, S. ve Ertuğrul, İ. (2022). Çok kriterli karar verme yöntemleri ile bir mermer fabrikası için kesintisiz güç kaynağı seçimi. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(3), 251-266. doi: 10.52791/aksarayiibd.1009308
Yeşilkaya, M. (2018). Çok Ölçütlü Karar Verme Yöntemleri ile Kağıt Fabrikası Kuruluş Yeri Seçimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 31-44. doi: https://doi.org/10.21605/ cukurovaummfd.521775
Yong, D. (2006). Plant location selection based on fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 28(7), 839-844. doi: https://doi.org/10.1007/s00170-004-2436-5
Yücenur, G. N., Çaylak, Ş., Gönül, G., & Postalcıoğlu, M. (2020). An integrated solution with SWARA&COPRAS methods in renewable energy production: City selection for biogas facility. Renewable Energy, 145, 2587-2597. doi: https://doi.org/10.1016/j.renene.2019.08.011
Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama
Fabrika, depo gibi tesisler kuruldukları andan itibaren işletmeyi artık o bölgenin tüm koşullarına bağlı kılmaktadır. Yanlış bir karar, uzun yıllar sürecek problemleri beraberinde getirebilmektedir. Bu nedenle, birçok kriteri içerisinde barındıran yer seçimi süreci oldukça önemlidir. Makalemizde, kompozit pervane imalatı gerçekleştiren bir işletmenin, yeni tesis yerinin belirlenebilmesi için bir çalışma gerçekleştirilmiştir. Kriter ağırlıklarının belirlenmesinde Geliştirilmiş Bulanık Adım Adım Ağırlık Değerlendirme Oran Analizi (GB-SWARA), alternatiflerin değerlendirilmesinde ise Bulanık Birleştirilebilir Uzaklık Tabanlı Değerlendirme Yöntemi (B-CODAS) yöntemleri kullanılmıştır.
Akpınar, M. E. (2022). Machine Selection application in a hard chrome plating industry using fuzzy SWARA and fuzzy ARAS methods. Yönetim ve Ekonomi, 29(1), 107-119. doi: https://doi.org/10.18657/yonveek.848811
Alvand, A., Mirhosseini, S. M., Ehsanifar, M., Zeighami, E. & Mohammadi, A. (2021). Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran. International Journal of Construction Management, 1-13. doi: https://doi.org/10.1080/15623599.2021.1877875
Ansari, Z. N., Kant, R. & Shankar, R. (2020). Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. International Journal of Sustainable Engineering, 13(6), 473-494. doi: https://doi.org/10.1080/19397038.2020.1758973
Ar, İ. M., Baki, B. ve Özdemir, F. (2014). Kuruluş yeri seçiminde bulanık AHS-VIKOR yaklaşımının kullanımı: Otel sektöründe bir uygulama. Uluslararası İktisadi ve İdari İncelemeler Dergisi, (13), 93-114. doi: https://doi.org/10.18092/ijeas.07453
Aro, J. L., Selerio Jr, E., Evangelista, S. S., Maturan, F., Atibing, N. M., & Ocampo, L. (2022). Fermatean fuzzy CRITIC-CODAS-SORT for characterizing the challenges of circular public sector supply chains. Operations Research Perspectives, 9, 100246. doi: https://doi.org/10.1016/j.orp.2022.100246
Arslan, H. M., Durak, İ. ve Özdemir, Y. (2021). Entropi-Aras hibrit yöntemi ile bilişim işletmeleri için en uygun teknopark bölgesinin belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 17(3), 734-753. doi: https://doi.org/10.17130/ijmeb.839584
Asori, M., Dogbey, E., Morgan, A. K., Ampofo, S. T., Mpobi, R. K. J., & Katey, D. (2022). Application of GIS-based multi-criteria decision making analysis (GIS-MCDA) in selecting locations most suitable for siting engineered landfills–the case of Ashanti Region, Ghana. Management of Environmental Quality: An International Journal, 33 (3), 800-826. doi: https://doi.org/10.1108/MEQ-07-2021-0159
Aydınoğlu, A. Ç., Şişman, S. ve Ergül, İ. (2022). Sezgisel ağ tabanlı konum tahsis analiz algoritmaları ile tesis yeri optimizasyonu: İtfaiye tesisleri yer seçimi örneği. Journal of Turkish Operations Management, 6(1), 955-976.
Aytekin, A. (2018). Using hybrid method in selecting timber factory location. Drvna Industrija, 69(3), 273-281. doi: https://doi.org/10.5552/drind.2018.1736
Cedolin, M., Göker, N., Dogu, E., & Esra Albayrak, Y. (2017). Facility location selection employing fuzzy DEA and fuzzy goal programming techniques. In Advances in Fuzzy Logic and Technology 2017 (pp. 466-476). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-66830-7_42
Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139-153. doi: 10.1016/j.jenvman.2007.01.011
Chakraborty, S., Kumar, R. & Athawale, V. M. (2010). Facility location selection using the UTA method. The IUP Journal of Operations Management, 9(4), 21-34. Retrieved from https://ssrn.com/abstract=1744706
Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9. doi: https://doi.org/10.1016/S0165-0114(97)00377-1
Chithambaranathan, P., Rajkumar, A., Prithiviraj, D., & Palpandi, M. (2022). A multi criteria decision based approach for facility location selection with flexible criteria weights. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2022.04.467
Chou, T. Y., Hsu, C. L., & Chen, M. C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International journal of hospitality management, 27(2), 293-301. Doi: 10.1016/j.ijhm.2007.07.029
Dağ, S. ve Önder, E. (2013). Decision-making for facility location using VIKOR method. Journal of International Scientific Publication: Economy & Business, 7(1), 308-330. Retrieved from https://ssrn.com/abstract=2382495
Deveci, M., Simic, V., & Torkayesh, A. E. (2021). Remanufacturing facility location for automotive Lithium-ion batteries: An integrated neutrosophic decision-making model. Journal of Cleaner Production, 317, 128438. doi: https://doi.org/10.1016/j.jclepro.2021.128438
Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016). Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineering Management, 11(4), 262-278. doi: https://doi.org/10.1080/17509653.2015.1086964
Durak, İ., Arslan, H. M. ve Özdemir, Y. (2022). Application of AHP–TOPSIS methods in technopark selection of technology companies: Turkish case. Technology Analysis & Strategic Management, 34(10), 1109-1123. doi: https://doi.org/10.1080/09537325.2021.1925242
Effatpanah, S. K., Ahmadi, M. H., Aungkulanon, P., Maleki, A., Sadeghzadeh, M., Sharifpur, M., & Chen, L. (2022). Comparative analysis of five widely-used multi-criteria decision-making methods to evaluate clean energy technologies: a case study. Sustainability, 14(3), 1403. https://doi.org/10.3390/su14031403
Ertuğrul, İ., & Karakaşoğlu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. The International Journal of Advanced Manufacturing Technology, 39(7), 783-795. doi: https://doi.org/10.1007/s00170-007-1249-8
Feng, J., Xu, S. X., Xu, G., & Cheng, H. (2022). An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles. Transportation Research Part E: Logistics and Transportation Review, 157, 102569. doi: https://doi.org/10.1016/j.tre.2021.102569
Gao, Z., Yoshimoto, K., & Ohmori, S. (2010). Application of AHP/DEA to facility layout selection. In 2010 Third International Joint Conference on Computational Science and Optimization, China (Vol. 2, pp. 252-254). IEEE.
Ghasemian Sahebi, I., Arab, A., & Toufighi, S. P. (2020). Analyzing the barriers of organizational transformation by using fuzzy SWARA. Journal of Fuzzy Extension and Applications, 1(2), 84-97. doi: https://doi.org/10.22105/jfea.2020.249191.1010
Ghorabaee, M. K., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25-44. Retrieved from https://eds.p.ebscohost.com/eds/ pdfviewer/pdfviewer?vid=0&sid=f2b23750-01d9-4c63-a3d0-f2178fa19221%40redis
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antuchevičienė, J. (2017). Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. Journal of Business Economics and Management, 18(1), 1-19. doi: https://doi.org/10.3846/16111699.2016.1278559
Gorcun, O. F., Senthil, S., & Küçükönder, H. (2021). Evaluation of tanker vehicle selection using a novel hybrid fuzzy MCDM technique. Decision Making: Applications in Management and Engineering, 4(2), 140-162. doi:
https://doi.org/10.31181/dmame210402140g
Görçün, Ö. F., Zolfani, S. H., & Çanakçıoğlu, M. (2022). Analysis of efficiency and performance of global retail supply chains using integrated fuzzy SWARA and fuzzy EATWOS methods. Operations Management Research, 1-25. doi: https://doi.org/10.1007/s12063-022-00261-z
Güneş, M. (2019). KOBİ’ler için girişimcilik. İstanbul: Türkmen Kitabevi.
Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus, 5(1), 1-30. doi: https://doi.org/10.1186/s40064-016-2131-7
Maghsoodi, A.I, Maghsoodi, A.I, Poursoltan, P., Antucheviciene, J., & Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA—CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19(4), 1194-1210. doi: http://dx.doi.org/10.1016 /j.acme.2019.06.010
Kabadayı, N. ve Esen, T. E. Ç. (2021). Gri İlişkisel temelli TOPSIS yöntemi ile depo yeri seçimi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(1), 169-184. doi: https://doi.org/10.18506/anemon.761624
Karagoz, S., Deveci, M., Simic, V., Aydin, N., & Bolukbas, U. (2020). A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: a case study of Istanbul. Waste Management & Research, 38(6), 660-672. doi: https://doi.org/10.1177/0734242X19899729
Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling facility location problems. Applied Soft Computing, 102, 107107. doi: https://doi.org/10.1016/j.asoc.2021.107107
Karaşan, A., Kaya, İ., & Erdoğan, M. (2020). Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553-4574. doi: https://doi.org/10.1007/s00521-018-3752-2
Kannan, D., Moazzeni, S., Mostafayi Darmian, S., & Afrasiabi, A. (2021). A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainale evaluation of potential solar sites in east of Iran. Journal of Cleaner Production, 279, 122368. doi: https://doi.org/10.1016/j.jclepro.2020.122368
Karande, P., & Chatterjee, P. (2018). Desirability function approach for selection of facility location: A case study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France (pp. 1700-1708).
Kaul, A., Darbari, J. D., & Jha, P. C. (2020). A fuzzy MCDM model for facility location evaluation based on quality of life. In Soft Computing for Problem Solving (pp. 687-697). Springer, Singapore. doi: https://doi.org/10.1007/978-981-15-0035-0_56
Katrancı, A. ve Kundakcı, N. (2020). Bulanık CODAS yöntemi ile kripto para yatırım alternatiflerinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 22(4), doi: 958-973. https://doi.org/10.32709/akusosbil.599757
Keleş, M. K., Özdağoğlu, A. ve Işıldak, B. (2021). Yolcular Açısından Havalimanlarının Değerlendirilmesine Yönelik Çok Kriterli Karar Verme Yöntemleriyle Bir Uygulama. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23(2), 419-456. Erişim adresi: https://dergipark.org.tr/en/pub /ahbvuibfd/issue/64683/795201
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi: https://doi.org/10.3846/jbem.2010.12
Kieu, P. T., Nguyen, V. T., Nguyen, V. T., & Ho, T. P. (2021). A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms, 10(2), 53. doi: https://doi.org/10.3390/axioms10020053
Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2010). Operations management: Processes and supply chains. 9th Edition, New Jersey: Pearson. Çeviri Editörü: Semra Birgün, Nobel Yayınları, Ankara
Kumar, K., & Kumanan, S. (2011). An Integrated Fuzzy QFD and AHP Approach for Facility Location Selection. IUP Journal of Supply Chain Management, 8(4), 30-41. Retrieved from https://ssrn.com/abstract=2138805
Kuo, M. S., & Liang, G. S. (2011). A novel hybrid decision-making model for selecting locations in a fuzzy environment. Mathematical and Computer Modelling, 54(1-2), 88-104. doi: https://doi.org/10.1016/j.mcm.2011.01.038
Liu, Z., Huang, R., & Shao, S. (2022). Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment. AIMS Mathematics, 7(7), 13292-13312. https://doi.org/10.3934/math.2022734
Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5), 2401-2418. doi: https://doi.org/10.1007/s00170-016-9880-x
Miç, P., & Antmen, Z. F. (2021). A Decision-making model based on TOPSIS, WASPAS, and MULTIMOORA methods for university location selection Problem. SAGE Open, 11(3), 21582440211040115. doi: https://doi.org/10.1177/21582440211040115
Moniri, M. R., Tabriz, A. A., Ayough, A., & Zandieh, M. (2021). Turnaround project risk assessment using hybrid fuzzy SWARA and EDAS method: case of upstream oil process industries in Iran. Journal of Engineering, Design and Technology, 19(4), 966-988, doi: https://doi.org/10.1108/JEDT-07-2020-0287
Mucuk, İ. (2018). Modern işletmecilik (21. Baskı). İstanbul: Türkmen Kitabevi.
Nacar, E. N. ve Erdebilli, B. (2021). Tesis yeri seçimine yeni bir bakış: katmanlı çok kriterli karar verme yöntemi. Verimlilik Dergisi, (4), 103-117. doi: https://doi.org/10.51551/verimlilik.832480
Nong, T. N. M. (2022). A hybrid model for distribution center location selection. The Asian Journal of Shipping and Logistics, 38(1), 40-49. doi: https://doi.org/10.1016/j.ajsl.2021.10.003
Özbek, A. (2019). Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 2. Baskı, Ankara: Seçkin Yayıncılık. ISBN:9789750245138
Panchal, D., Chatterjee, P., Shukla, R. K., Choudhury, T. & Tamosaitiene, J. (2017). Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry. Economic Computation and Economic Cybernetics Studies and Research, 3(51), 179-196. Retrieved from https://ideas.repec.org/a/cys/ecocyb /v50y2017i3p179-196.html
Pourrezaie-Khaligh, P., Bozorgi-Amiri, A., Yousefi-Babadi, A., & Moon, I. (2022).: A case study. Applied Mathematical Modelling, 102, 243-267. doi: https://doi.org/10.1016/j.apm.2021.09.022
Rahman, M. S., Ali, M. I., Hossain, U., & Mondal, T. K. (2018). Facility location selection for plastic manufacturing industry in Bangladesh by using AHP method. International Journal of Research in Industrial Engineering, 7(3), 307-319. doi:https://doi.org/10.22105/riej.2018.135742.1049
Seker, S., & Aydin, N. (2020). Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy, 45(32), 15855-15868. doi: https://doi.org/10.1016/j.ijhydene.2019.12.183
Sennaroglu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173.doi: https://doi.org/10.1016/j.trd.2017.12.022
Simic, V., Karagoz, S., Deveci, M., & Aydin, N. (2021). Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location. Expert Systems with Applications, 175, 114644. doi: https://doi.org/10.1016/j.eswa.2021.114644
Singh, S., Upadhyay, S. P., & Powar, S. (2022). Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods. Applied Energy, 308, 118235. doi: https://doi.org/10.1016/j.apenergy.2021.118235
Soyşekerci, S. ve Erturgut, R. (2011). Genel işletme. İstanbul: Kriter Yayınları.
Steyn, J. & Buys, C. (2017). Project optimisation techniques: Site selection for process plants, Owner Team Consulatation, Retrieved from https://www.ownerteamconsult.com/site-selection-for-process-plants/
Suman, M. N. H., MD Sarfaraj, N., Chyon, F. A., & Fahim, M. R. I. (2021). Facility location selection for the furniture industry of Bangladesh: Comparative AHP and FAHP analysis. International Journal of Engineering Business Management, 13, 18479790211030851. doi: https://doi.org/10.1177/18479790211030851
Terme, B., Çiçek, İ., & Kiraz, A. Entegre Bulanık AHP ve Bulanık VIKOR Yöntemleriyle Tesis Yeri Seçimi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 383-398. doi: https://doi.org/10.21605/ cukurovaumfd.1146098
Torkayesh, A. E., & Simic, V. (2022). Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste. Sustainable Cities and Society, 77, 103543. doi: https://doi.org/10.1016/j.scs.2021.103543
Tripathi, A. K., Agrawal, S., & Gupta, R. D. (2021). Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India. GeoJournal, 1-22. doi: https://doi.org/10.1007/s10708-021-10445-y
Tuzkaya, G., Önüt, S., Tuzkaya, U. R., & Gülsün, B. (2008). An analytic network process approach for locating undesirable facilities: An example from Istanbul, Turkey. Journal of Environmental Management, 88(4), 970-983. doi: https://doi.org/10.1016/j.jenvman.2007.05.004
Türk, A., & Özkök, M. (2020). Shipyard location selection based on fuzzy AHP and TOPSIS. Journal of Intelligent & Fuzzy Systems, 39(3), 4557-4576. doi: https://doi.org/10.3233/JIFS-200522
Ulutaş, A. (2020). SWARA tabanlı CODAS Yöntemi ile kargo şirketi seçimi. MANAS Sosyal Araştırmalar Dergisi, 9(3), 1640-1647. doi: https://doi.org/10.33206/mjss.559351
Vojinović, N., Stević, Ž., & Tanackov, I. (2022). A Novel IMF SWARA-FDWGA-PESTEL analysis for assessment of healthcare system. Operational Research in Engineering Sciences: Theory and Applications, 5(1), 139-151. doi: https://doi.org/10.31181/oresta070422211v
Vrtagić, S., Softić, E., Subotić, M., Stević, Ž., Dordevic, M., & Ponjavic, M. (2021). Ranking road sections based on MCDM model: New ımproved Fuzzy SWARA (IMF SWARA). Axioms, 10(2), 92. doi: https://doi.org/10.3390/axioms10020092
Wang, C. N., Huang, Y. F., Chai, Y. C., & Nguyen, V. T. (2018). A multi-criteria decision making (MCDM) for renewable energy plants location selection in Vietnam under a fuzzy environment. Applied Sciences, 8(11), 2069. doi: https://doi.org/10.3390/app8112069
Xuan, H. A., Trinh, V. V., Techato, K., & Phoungthong, K. (2022). Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustainable Energy Technologies and Assessments, 52, 101979. doi: https://doi.org/10.1016/j.seta.2022.101979
Yalçın, N., & Yapıcı Pehlivan, N. (2019). Application of the fuzzy CODAS method based on fuzzy envelopes for hesitant fuzzy linguistic term sets: A case study on a personnel selection problem. Symmetry, 11(4), 493,1-27. https://doi.org/10.3390/sym11040493
Yaşlıoğlu, M. M. ve Önder, E. (2016). Solving facility location problem for a plastic goods manufacturing company in turkey using AHP and TOPSIS methods. Yönetim Bilimleri Dergisi, 14(28), 223-249. Retrieved from https://dergipark.org.tr/en/download/article-file/660898
Yenilmezel, S. ve Ertuğrul, İ. (2022). Çok kriterli karar verme yöntemleri ile bir mermer fabrikası için kesintisiz güç kaynağı seçimi. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(3), 251-266. doi: 10.52791/aksarayiibd.1009308
Yeşilkaya, M. (2018). Çok Ölçütlü Karar Verme Yöntemleri ile Kağıt Fabrikası Kuruluş Yeri Seçimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 31-44. doi: https://doi.org/10.21605/ cukurovaummfd.521775
Yong, D. (2006). Plant location selection based on fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 28(7), 839-844. doi: https://doi.org/10.1007/s00170-004-2436-5
Yücenur, G. N., Çaylak, Ş., Gönül, G., & Postalcıoğlu, M. (2020). An integrated solution with SWARA&COPRAS methods in renewable energy production: City selection for biogas facility. Renewable Energy, 145, 2587-2597. doi: https://doi.org/10.1016/j.renene.2019.08.011
Akpınar, M. E. (2022). Machine Selection application in a hard chrome plating industry using fuzzy SWARA and fuzzy ARAS methods. Yönetim ve Ekonomi, 29(1), 107-119. doi: https://doi.org/10.18657/yonveek.848811
Alvand, A., Mirhosseini, S. M., Ehsanifar, M., Zeighami, E. & Mohammadi, A. (2021). Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran. International Journal of Construction Management, 1-13. doi: https://doi.org/10.1080/15623599.2021.1877875
Ansari, Z. N., Kant, R. & Shankar, R. (2020). Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. International Journal of Sustainable Engineering, 13(6), 473-494. doi: https://doi.org/10.1080/19397038.2020.1758973
Ar, İ. M., Baki, B. ve Özdemir, F. (2014). Kuruluş yeri seçiminde bulanık AHS-VIKOR yaklaşımının kullanımı: Otel sektöründe bir uygulama. Uluslararası İktisadi ve İdari İncelemeler Dergisi, (13), 93-114. doi: https://doi.org/10.18092/ijeas.07453
Aro, J. L., Selerio Jr, E., Evangelista, S. S., Maturan, F., Atibing, N. M., & Ocampo, L. (2022). Fermatean fuzzy CRITIC-CODAS-SORT for characterizing the challenges of circular public sector supply chains. Operations Research Perspectives, 9, 100246. doi: https://doi.org/10.1016/j.orp.2022.100246
Arslan, H. M., Durak, İ. ve Özdemir, Y. (2021). Entropi-Aras hibrit yöntemi ile bilişim işletmeleri için en uygun teknopark bölgesinin belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 17(3), 734-753. doi: https://doi.org/10.17130/ijmeb.839584
Asori, M., Dogbey, E., Morgan, A. K., Ampofo, S. T., Mpobi, R. K. J., & Katey, D. (2022). Application of GIS-based multi-criteria decision making analysis (GIS-MCDA) in selecting locations most suitable for siting engineered landfills–the case of Ashanti Region, Ghana. Management of Environmental Quality: An International Journal, 33 (3), 800-826. doi: https://doi.org/10.1108/MEQ-07-2021-0159
Aydınoğlu, A. Ç., Şişman, S. ve Ergül, İ. (2022). Sezgisel ağ tabanlı konum tahsis analiz algoritmaları ile tesis yeri optimizasyonu: İtfaiye tesisleri yer seçimi örneği. Journal of Turkish Operations Management, 6(1), 955-976.
Aytekin, A. (2018). Using hybrid method in selecting timber factory location. Drvna Industrija, 69(3), 273-281. doi: https://doi.org/10.5552/drind.2018.1736
Cedolin, M., Göker, N., Dogu, E., & Esra Albayrak, Y. (2017). Facility location selection employing fuzzy DEA and fuzzy goal programming techniques. In Advances in Fuzzy Logic and Technology 2017 (pp. 466-476). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-66830-7_42
Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139-153. doi: 10.1016/j.jenvman.2007.01.011
Chakraborty, S., Kumar, R. & Athawale, V. M. (2010). Facility location selection using the UTA method. The IUP Journal of Operations Management, 9(4), 21-34. Retrieved from https://ssrn.com/abstract=1744706
Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9. doi: https://doi.org/10.1016/S0165-0114(97)00377-1
Chithambaranathan, P., Rajkumar, A., Prithiviraj, D., & Palpandi, M. (2022). A multi criteria decision based approach for facility location selection with flexible criteria weights. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2022.04.467
Chou, T. Y., Hsu, C. L., & Chen, M. C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International journal of hospitality management, 27(2), 293-301. Doi: 10.1016/j.ijhm.2007.07.029
Dağ, S. ve Önder, E. (2013). Decision-making for facility location using VIKOR method. Journal of International Scientific Publication: Economy & Business, 7(1), 308-330. Retrieved from https://ssrn.com/abstract=2382495
Deveci, M., Simic, V., & Torkayesh, A. E. (2021). Remanufacturing facility location for automotive Lithium-ion batteries: An integrated neutrosophic decision-making model. Journal of Cleaner Production, 317, 128438. doi: https://doi.org/10.1016/j.jclepro.2021.128438
Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016). Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineering Management, 11(4), 262-278. doi: https://doi.org/10.1080/17509653.2015.1086964
Durak, İ., Arslan, H. M. ve Özdemir, Y. (2022). Application of AHP–TOPSIS methods in technopark selection of technology companies: Turkish case. Technology Analysis & Strategic Management, 34(10), 1109-1123. doi: https://doi.org/10.1080/09537325.2021.1925242
Effatpanah, S. K., Ahmadi, M. H., Aungkulanon, P., Maleki, A., Sadeghzadeh, M., Sharifpur, M., & Chen, L. (2022). Comparative analysis of five widely-used multi-criteria decision-making methods to evaluate clean energy technologies: a case study. Sustainability, 14(3), 1403. https://doi.org/10.3390/su14031403
Ertuğrul, İ., & Karakaşoğlu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. The International Journal of Advanced Manufacturing Technology, 39(7), 783-795. doi: https://doi.org/10.1007/s00170-007-1249-8
Feng, J., Xu, S. X., Xu, G., & Cheng, H. (2022). An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles. Transportation Research Part E: Logistics and Transportation Review, 157, 102569. doi: https://doi.org/10.1016/j.tre.2021.102569
Gao, Z., Yoshimoto, K., & Ohmori, S. (2010). Application of AHP/DEA to facility layout selection. In 2010 Third International Joint Conference on Computational Science and Optimization, China (Vol. 2, pp. 252-254). IEEE.
Ghasemian Sahebi, I., Arab, A., & Toufighi, S. P. (2020). Analyzing the barriers of organizational transformation by using fuzzy SWARA. Journal of Fuzzy Extension and Applications, 1(2), 84-97. doi: https://doi.org/10.22105/jfea.2020.249191.1010
Ghorabaee, M. K., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25-44. Retrieved from https://eds.p.ebscohost.com/eds/ pdfviewer/pdfviewer?vid=0&sid=f2b23750-01d9-4c63-a3d0-f2178fa19221%40redis
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antuchevičienė, J. (2017). Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. Journal of Business Economics and Management, 18(1), 1-19. doi: https://doi.org/10.3846/16111699.2016.1278559
Gorcun, O. F., Senthil, S., & Küçükönder, H. (2021). Evaluation of tanker vehicle selection using a novel hybrid fuzzy MCDM technique. Decision Making: Applications in Management and Engineering, 4(2), 140-162. doi:
https://doi.org/10.31181/dmame210402140g
Görçün, Ö. F., Zolfani, S. H., & Çanakçıoğlu, M. (2022). Analysis of efficiency and performance of global retail supply chains using integrated fuzzy SWARA and fuzzy EATWOS methods. Operations Management Research, 1-25. doi: https://doi.org/10.1007/s12063-022-00261-z
Güneş, M. (2019). KOBİ’ler için girişimcilik. İstanbul: Türkmen Kitabevi.
Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus, 5(1), 1-30. doi: https://doi.org/10.1186/s40064-016-2131-7
Maghsoodi, A.I, Maghsoodi, A.I, Poursoltan, P., Antucheviciene, J., & Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA—CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19(4), 1194-1210. doi: http://dx.doi.org/10.1016 /j.acme.2019.06.010
Kabadayı, N. ve Esen, T. E. Ç. (2021). Gri İlişkisel temelli TOPSIS yöntemi ile depo yeri seçimi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(1), 169-184. doi: https://doi.org/10.18506/anemon.761624
Karagoz, S., Deveci, M., Simic, V., Aydin, N., & Bolukbas, U. (2020). A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: a case study of Istanbul. Waste Management & Research, 38(6), 660-672. doi: https://doi.org/10.1177/0734242X19899729
Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling facility location problems. Applied Soft Computing, 102, 107107. doi: https://doi.org/10.1016/j.asoc.2021.107107
Karaşan, A., Kaya, İ., & Erdoğan, M. (2020). Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553-4574. doi: https://doi.org/10.1007/s00521-018-3752-2
Kannan, D., Moazzeni, S., Mostafayi Darmian, S., & Afrasiabi, A. (2021). A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainale evaluation of potential solar sites in east of Iran. Journal of Cleaner Production, 279, 122368. doi: https://doi.org/10.1016/j.jclepro.2020.122368
Karande, P., & Chatterjee, P. (2018). Desirability function approach for selection of facility location: A case study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France (pp. 1700-1708).
Kaul, A., Darbari, J. D., & Jha, P. C. (2020). A fuzzy MCDM model for facility location evaluation based on quality of life. In Soft Computing for Problem Solving (pp. 687-697). Springer, Singapore. doi: https://doi.org/10.1007/978-981-15-0035-0_56
Katrancı, A. ve Kundakcı, N. (2020). Bulanık CODAS yöntemi ile kripto para yatırım alternatiflerinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 22(4), doi: 958-973. https://doi.org/10.32709/akusosbil.599757
Keleş, M. K., Özdağoğlu, A. ve Işıldak, B. (2021). Yolcular Açısından Havalimanlarının Değerlendirilmesine Yönelik Çok Kriterli Karar Verme Yöntemleriyle Bir Uygulama. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23(2), 419-456. Erişim adresi: https://dergipark.org.tr/en/pub /ahbvuibfd/issue/64683/795201
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi: https://doi.org/10.3846/jbem.2010.12
Kieu, P. T., Nguyen, V. T., Nguyen, V. T., & Ho, T. P. (2021). A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms, 10(2), 53. doi: https://doi.org/10.3390/axioms10020053
Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2010). Operations management: Processes and supply chains. 9th Edition, New Jersey: Pearson. Çeviri Editörü: Semra Birgün, Nobel Yayınları, Ankara
Kumar, K., & Kumanan, S. (2011). An Integrated Fuzzy QFD and AHP Approach for Facility Location Selection. IUP Journal of Supply Chain Management, 8(4), 30-41. Retrieved from https://ssrn.com/abstract=2138805
Kuo, M. S., & Liang, G. S. (2011). A novel hybrid decision-making model for selecting locations in a fuzzy environment. Mathematical and Computer Modelling, 54(1-2), 88-104. doi: https://doi.org/10.1016/j.mcm.2011.01.038
Liu, Z., Huang, R., & Shao, S. (2022). Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment. AIMS Mathematics, 7(7), 13292-13312. https://doi.org/10.3934/math.2022734
Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5), 2401-2418. doi: https://doi.org/10.1007/s00170-016-9880-x
Miç, P., & Antmen, Z. F. (2021). A Decision-making model based on TOPSIS, WASPAS, and MULTIMOORA methods for university location selection Problem. SAGE Open, 11(3), 21582440211040115. doi: https://doi.org/10.1177/21582440211040115
Moniri, M. R., Tabriz, A. A., Ayough, A., & Zandieh, M. (2021). Turnaround project risk assessment using hybrid fuzzy SWARA and EDAS method: case of upstream oil process industries in Iran. Journal of Engineering, Design and Technology, 19(4), 966-988, doi: https://doi.org/10.1108/JEDT-07-2020-0287
Mucuk, İ. (2018). Modern işletmecilik (21. Baskı). İstanbul: Türkmen Kitabevi.
Nacar, E. N. ve Erdebilli, B. (2021). Tesis yeri seçimine yeni bir bakış: katmanlı çok kriterli karar verme yöntemi. Verimlilik Dergisi, (4), 103-117. doi: https://doi.org/10.51551/verimlilik.832480
Nong, T. N. M. (2022). A hybrid model for distribution center location selection. The Asian Journal of Shipping and Logistics, 38(1), 40-49. doi: https://doi.org/10.1016/j.ajsl.2021.10.003
Özbek, A. (2019). Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 2. Baskı, Ankara: Seçkin Yayıncılık. ISBN:9789750245138
Panchal, D., Chatterjee, P., Shukla, R. K., Choudhury, T. & Tamosaitiene, J. (2017). Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry. Economic Computation and Economic Cybernetics Studies and Research, 3(51), 179-196. Retrieved from https://ideas.repec.org/a/cys/ecocyb /v50y2017i3p179-196.html
Pourrezaie-Khaligh, P., Bozorgi-Amiri, A., Yousefi-Babadi, A., & Moon, I. (2022).: A case study. Applied Mathematical Modelling, 102, 243-267. doi: https://doi.org/10.1016/j.apm.2021.09.022
Rahman, M. S., Ali, M. I., Hossain, U., & Mondal, T. K. (2018). Facility location selection for plastic manufacturing industry in Bangladesh by using AHP method. International Journal of Research in Industrial Engineering, 7(3), 307-319. doi:https://doi.org/10.22105/riej.2018.135742.1049
Seker, S., & Aydin, N. (2020). Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy, 45(32), 15855-15868. doi: https://doi.org/10.1016/j.ijhydene.2019.12.183
Sennaroglu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173.doi: https://doi.org/10.1016/j.trd.2017.12.022
Simic, V., Karagoz, S., Deveci, M., & Aydin, N. (2021). Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location. Expert Systems with Applications, 175, 114644. doi: https://doi.org/10.1016/j.eswa.2021.114644
Singh, S., Upadhyay, S. P., & Powar, S. (2022). Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods. Applied Energy, 308, 118235. doi: https://doi.org/10.1016/j.apenergy.2021.118235
Soyşekerci, S. ve Erturgut, R. (2011). Genel işletme. İstanbul: Kriter Yayınları.
Steyn, J. & Buys, C. (2017). Project optimisation techniques: Site selection for process plants, Owner Team Consulatation, Retrieved from https://www.ownerteamconsult.com/site-selection-for-process-plants/
Suman, M. N. H., MD Sarfaraj, N., Chyon, F. A., & Fahim, M. R. I. (2021). Facility location selection for the furniture industry of Bangladesh: Comparative AHP and FAHP analysis. International Journal of Engineering Business Management, 13, 18479790211030851. doi: https://doi.org/10.1177/18479790211030851
Terme, B., Çiçek, İ., & Kiraz, A. Entegre Bulanık AHP ve Bulanık VIKOR Yöntemleriyle Tesis Yeri Seçimi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 383-398. doi: https://doi.org/10.21605/ cukurovaumfd.1146098
Torkayesh, A. E., & Simic, V. (2022). Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste. Sustainable Cities and Society, 77, 103543. doi: https://doi.org/10.1016/j.scs.2021.103543
Tripathi, A. K., Agrawal, S., & Gupta, R. D. (2021). Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India. GeoJournal, 1-22. doi: https://doi.org/10.1007/s10708-021-10445-y
Tuzkaya, G., Önüt, S., Tuzkaya, U. R., & Gülsün, B. (2008). An analytic network process approach for locating undesirable facilities: An example from Istanbul, Turkey. Journal of Environmental Management, 88(4), 970-983. doi: https://doi.org/10.1016/j.jenvman.2007.05.004
Türk, A., & Özkök, M. (2020). Shipyard location selection based on fuzzy AHP and TOPSIS. Journal of Intelligent & Fuzzy Systems, 39(3), 4557-4576. doi: https://doi.org/10.3233/JIFS-200522
Ulutaş, A. (2020). SWARA tabanlı CODAS Yöntemi ile kargo şirketi seçimi. MANAS Sosyal Araştırmalar Dergisi, 9(3), 1640-1647. doi: https://doi.org/10.33206/mjss.559351
Vojinović, N., Stević, Ž., & Tanackov, I. (2022). A Novel IMF SWARA-FDWGA-PESTEL analysis for assessment of healthcare system. Operational Research in Engineering Sciences: Theory and Applications, 5(1), 139-151. doi: https://doi.org/10.31181/oresta070422211v
Vrtagić, S., Softić, E., Subotić, M., Stević, Ž., Dordevic, M., & Ponjavic, M. (2021). Ranking road sections based on MCDM model: New ımproved Fuzzy SWARA (IMF SWARA). Axioms, 10(2), 92. doi: https://doi.org/10.3390/axioms10020092
Wang, C. N., Huang, Y. F., Chai, Y. C., & Nguyen, V. T. (2018). A multi-criteria decision making (MCDM) for renewable energy plants location selection in Vietnam under a fuzzy environment. Applied Sciences, 8(11), 2069. doi: https://doi.org/10.3390/app8112069
Xuan, H. A., Trinh, V. V., Techato, K., & Phoungthong, K. (2022). Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustainable Energy Technologies and Assessments, 52, 101979. doi: https://doi.org/10.1016/j.seta.2022.101979
Yalçın, N., & Yapıcı Pehlivan, N. (2019). Application of the fuzzy CODAS method based on fuzzy envelopes for hesitant fuzzy linguistic term sets: A case study on a personnel selection problem. Symmetry, 11(4), 493,1-27. https://doi.org/10.3390/sym11040493
Yaşlıoğlu, M. M. ve Önder, E. (2016). Solving facility location problem for a plastic goods manufacturing company in turkey using AHP and TOPSIS methods. Yönetim Bilimleri Dergisi, 14(28), 223-249. Retrieved from https://dergipark.org.tr/en/download/article-file/660898
Yenilmezel, S. ve Ertuğrul, İ. (2022). Çok kriterli karar verme yöntemleri ile bir mermer fabrikası için kesintisiz güç kaynağı seçimi. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(3), 251-266. doi: 10.52791/aksarayiibd.1009308
Yeşilkaya, M. (2018). Çok Ölçütlü Karar Verme Yöntemleri ile Kağıt Fabrikası Kuruluş Yeri Seçimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 31-44. doi: https://doi.org/10.21605/ cukurovaummfd.521775
Yong, D. (2006). Plant location selection based on fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 28(7), 839-844. doi: https://doi.org/10.1007/s00170-004-2436-5
Yücenur, G. N., Çaylak, Ş., Gönül, G., & Postalcıoğlu, M. (2020). An integrated solution with SWARA&COPRAS methods in renewable energy production: City selection for biogas facility. Renewable Energy, 145, 2587-2597. doi: https://doi.org/10.1016/j.renene.2019.08.011
Peker, B. N., & Görener, A. (2023). Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama. Journal of Turkish Operations Management, 7(1), 1493-1512. https://doi.org/10.56554/jtom.1215975
AMA
Peker BN, Görener A. Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama. JTOM. June 2023;7(1):1493-1512. doi:10.56554/jtom.1215975
Chicago
Peker, Bilge Nur, and Ali Görener. “Geliştirilmiş Bulanık SWARA Ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama”. Journal of Turkish Operations Management 7, no. 1 (June 2023): 1493-1512. https://doi.org/10.56554/jtom.1215975.
EndNote
Peker BN, Görener A (June 1, 2023) Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama. Journal of Turkish Operations Management 7 1 1493–1512.
IEEE
B. N. Peker and A. Görener, “Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama”, JTOM, vol. 7, no. 1, pp. 1493–1512, 2023, doi: 10.56554/jtom.1215975.
ISNAD
Peker, Bilge Nur - Görener, Ali. “Geliştirilmiş Bulanık SWARA Ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama”. Journal of Turkish Operations Management 7/1 (June 2023), 1493-1512. https://doi.org/10.56554/jtom.1215975.
JAMA
Peker BN, Görener A. Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama. JTOM. 2023;7:1493–1512.
MLA
Peker, Bilge Nur and Ali Görener. “Geliştirilmiş Bulanık SWARA Ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama”. Journal of Turkish Operations Management, vol. 7, no. 1, 2023, pp. 1493-12, doi:10.56554/jtom.1215975.
Vancouver
Peker BN, Görener A. Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama. JTOM. 2023;7(1):1493-512.