VERSIONS OF FUGLEDE-PUTNAM THEOREM ON p-w-HYPONORMAL OPERATORS
Year 2022,
, 43 - 50, 01.03.2022
Aissa Naslı Bakır
Abstract
The aim of the article is the presentation of certain extensions of the famous
Fuglede-Putnam Theorem on the class of $p$-$w$-hyponormal operators, which generalize some results
proved by authors in \cite{Prasad}.
Supporting Institution
Laboratory of Mathematics and Application - DGRSDT in Algeria.
Thanks
My thanks and gratitude for the editors and reviewers. Regards.
Bakir.
References
- \bibitem{Aluthge1} A. Aluthge, On $p$-hyponormal operators
for $0<p<1$, Integ. Equa. Oper. Theo. Vol.13, pp.307-315, (1990).
- \bibitem{Aluthge2} A. Aluthge and D. Wang, $w$-hyponormal operators,
Integ. Equa. Oper. Theo., Vol.36, No.1, pp.1-10, (2000).
- \bibitem{Aluthge3} A. Aluthge, Some generalized theorems on $p$-hyponormal operators, Integ. Equa.
Oper. Theo., Vol.24, pp.497-501, (1996).
- \bibitem{Cho} M. Cho, T. Huruya and Y.O. Kim, A note on $w$-%
hyponormal operators, J. Ineq. Appl., Vol.17, No.1, pp.1-10, (2002).
- \bibitem{Kim} I.H. Kim, The Fuglede-Putnam theorem for $(p,k)$%
-quasihyponormal operators, J. Ineq. and Appl., ID 47481,
pp.1-7, (2006).
- \bibitem{Mecheri} S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede-
Putnam theorem for $p$-hyponormal or class $\mathcal{Y}$ operators, Bull. Korean Math. Soc., Vol.43, No.4, 747-753, (2006).
- \bibitem{Nasli} A. Nasli Bakir and S. Mecheri, Another version of
Fuglede-Putnam Theorem, Georg. Math. J., Vol.16, No.3, pp.427-433, (2009).
- \bibitem{Otieno1} M.O. Otieno, On intertwining $w$%
-hyponormal operators, Opuscula Mathematica, Vol.25, No.2, pp.275-285, (2005).
- \bibitem{Otieno2} M.O. Otieno, On quasisimilarity and $w$-hyponormal
operators, Opuscula Mathematica, Vol.27, No.1, pp.73-81, (2007).
- \bibitem{Prasad} T. Prasad and A. Bachir, Putnam theorem for
$p$-$w$-hyponorma or class $\mathcal{Y}$ operators, Int.
J. Open Problems Compt. Math., Vol.11, No.1, pp.17-24, (2018).
- \bibitem{Stampfli} J.G. Stampfli and B.L. Wadhwa, An asymmetric
Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J.,
Vol.25, pp.359-365, (1976).
- \bibitem{Tadahashi} K. Tadahashi, A note on $p$-hyponormal
operators, Proc. Amer. Math. Soc., Vol.125, pp.221-230, (1997).
- \bibitem{Takahashi} K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math.
(Szeged), Vol.43, pp.123-125, (1981).
- \bibitem{Tanahashi1} K. Tanahashi, On $\log $-hyponormal
operators, Integ. Equa. Oper. Theo., Vol.34, pp.364-372, (1999).
- \bibitem{Uchiyama} A. Uchiyama and K. Tanahashi, Fuglede-Putnam's
theorem for $p$-hyponormal or $\log $-hyponormal operators%
, Glasg. Math. J., Vol.44, pp.397-410, (2002).
- \bibitem{Yang}C.S. Yang and H. Li, Properties of $p$-$w$-hyponormal operators,
Appl. Math. J. Chinese Univ. Ser. B, Vol.21, No.1, pp.64-68, (2006).
- \bibitem{Yoshino} T. Yoshino, Remark on the generalisation of
Putnam-Fuglede theorem, Proc. Amer. Math. Soc., Vol.95, pp.571-572, (1985).