Research Article
BibTex RIS Cite

POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS

Year 2022, , 76 - 80, 31.07.2022
https://doi.org/10.33773/jum.1140875

Abstract

Let $K$ be a field of characteristic zero, and $L_{m,c}$ be the free metabelian nilpotent Lie algebra of class $c$ of rank $m$ over $K$. We call an automorphism $\phi$ pointwise inner, if there exists an inner automorphism $\xi_i$ for each generator $x_i$, $i=1,\ldots,m$, such that $\phi(x_i)=\xi_i(x_i)$. In this study, we exemine the group $PI(L_{m,c})$ of pintwise inner automorphisms of the Lie algebra $L_{m,c}$, and we provide a set of generators for this group.

References

  • G. Endimioni, Inner automorphisms of free nilpotent groups, The Quarterly Journal of Mathematics, 53 (4), pp. 397-402 (2002). Ş. Fındık, Normal and Normally outher automorphisms of free metabelian nilpotent Lie algebra, Serdica Math J., 36, pp. 171-210 (2010).
  • F.K. Grossman, On the residual Finiteness of certain mapping class groups, J. Londan Mathematical Soc., 9, pp. 160-164 (1974). A. Lubotzky, Normal Automorphisms of free groups, J. Algebra, 63, pp. 494-498 (1980). A. Temizyürek, E. Aydın, Serbest Metabelyen Lie Cebirlerinin noktasal iç otomorfizmleri, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, pp. 127-134 (2004).
Year 2022, , 76 - 80, 31.07.2022
https://doi.org/10.33773/jum.1140875

Abstract

References

  • G. Endimioni, Inner automorphisms of free nilpotent groups, The Quarterly Journal of Mathematics, 53 (4), pp. 397-402 (2002). Ş. Fındık, Normal and Normally outher automorphisms of free metabelian nilpotent Lie algebra, Serdica Math J., 36, pp. 171-210 (2010).
  • F.K. Grossman, On the residual Finiteness of certain mapping class groups, J. Londan Mathematical Soc., 9, pp. 160-164 (1974). A. Lubotzky, Normal Automorphisms of free groups, J. Algebra, 63, pp. 494-498 (1980). A. Temizyürek, E. Aydın, Serbest Metabelyen Lie Cebirlerinin noktasal iç otomorfizmleri, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, pp. 127-134 (2004).
There are 2 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ela Aydın 0000-0003-4867-0583

Publication Date July 31, 2022
Submission Date July 5, 2022
Acceptance Date July 23, 2022
Published in Issue Year 2022

Cite

APA Aydın, E. (2022). POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS. Journal of Universal Mathematics, 5(2), 76-80. https://doi.org/10.33773/jum.1140875
AMA Aydın E. POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS. JUM. July 2022;5(2):76-80. doi:10.33773/jum.1140875
Chicago Aydın, Ela. “POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS”. Journal of Universal Mathematics 5, no. 2 (July 2022): 76-80. https://doi.org/10.33773/jum.1140875.
EndNote Aydın E (July 1, 2022) POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS. Journal of Universal Mathematics 5 2 76–80.
IEEE E. Aydın, “POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS”, JUM, vol. 5, no. 2, pp. 76–80, 2022, doi: 10.33773/jum.1140875.
ISNAD Aydın, Ela. “POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS”. Journal of Universal Mathematics 5/2 (July 2022), 76-80. https://doi.org/10.33773/jum.1140875.
JAMA Aydın E. POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS. JUM. 2022;5:76–80.
MLA Aydın, Ela. “POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS”. Journal of Universal Mathematics, vol. 5, no. 2, 2022, pp. 76-80, doi:10.33773/jum.1140875.
Vancouver Aydın E. POINTWISE INNER AUTOMORPHISMS OF RELATIVELY FREE LIE ALGEBRAS. JUM. 2022;5(2):76-80.