Research Article
BibTex RIS Cite

ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS

Year 2022, , 185 - 192, 31.07.2022
https://doi.org/10.33773/jum.1143787

Abstract

Let $K$ be a field of characteristic zero, $X_n=\{x_1,\dots,x_n\}$ be a set of variables, $K[X_n]$ be the polynomial algebra and $F_n$ be the free metabelian Lie algebra of rank $n$ generated by $X_n$ over the base field $K$. Well known result of Weitzenb\"ock states that $K[X_n]^\delta=\big \{u\in K[X_n] \big\vert\ \delta(u)=0\big \}$ is finitely generated as an algebra, where $\delta$ is a locally nilpotent linear derivation of $K[X_n]$. Extending this ideal to the non commutative algebras, recently the algebra $F_n^\delta$ of constants in the free metabelian Lie algebras have been investigated. According to the findings, $F_n^\delta$ is not finitely generated as a Lie algebra; whereas, $F_n^\delta \cap F_n^\prime$ is finitely generated $K[X_n]^\delta$-module and a list of generators for $n\le 4$ was given. In this work, in filling the gap in the list of small $n'$s we work in $F_5$ and give a list of generators of $F_5^\delta$ where $\delta(x_5)=x_4$, $\delta(x_4)=0$, $\delta(x_3)=x_2$, $\delta(x_2)=x_1$ and $\delta(x_1)=0$.

References

  • Reference1 M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math., 81 , 766-772 (1959).
  • Reference2 E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916).
  • Reference3 R. Weitzenbock, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231-293 (1932).
  • Reference4 W. Dicks, E. Formanek, Poincare Series and a problem of S. Montgomery, Linear Multilinear Algebra, 12, 21-30 (1982).
  • Reference5 V.K. Kharchenko, Algebra of Invariants of Free Algebras (Russian), Algebra iLogika, 17, 478-487, Translation: Algebra and Logic,(1978) 17, 316-321 (1978).
  • Reference6 R.M. Bryant, On the fixed points of a finite group acting on a free Lie algebra, J. London Math. Soc. 43 (2) 215-224 (1991).
  • Reference7 V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120 (4) 1021-1028 (1994).
  • Reference8 R. Dangovski, V. Drensky, Ş. Fındık, Weitzenböck derivations of free metabelian Lie algebras, Linear Algebra and its Applications, 439 10, 3279-3296 (2013).
  • Reference9 Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), ”Nauka”, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987.
  • Reference10 A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994. www-users.mat.umk.pl/\~{}anow/ps-dvi/pol-der.pdf.
Year 2022, , 185 - 192, 31.07.2022
https://doi.org/10.33773/jum.1143787

Abstract

References

  • Reference1 M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math., 81 , 766-772 (1959).
  • Reference2 E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916).
  • Reference3 R. Weitzenbock, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231-293 (1932).
  • Reference4 W. Dicks, E. Formanek, Poincare Series and a problem of S. Montgomery, Linear Multilinear Algebra, 12, 21-30 (1982).
  • Reference5 V.K. Kharchenko, Algebra of Invariants of Free Algebras (Russian), Algebra iLogika, 17, 478-487, Translation: Algebra and Logic,(1978) 17, 316-321 (1978).
  • Reference6 R.M. Bryant, On the fixed points of a finite group acting on a free Lie algebra, J. London Math. Soc. 43 (2) 215-224 (1991).
  • Reference7 V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120 (4) 1021-1028 (1994).
  • Reference8 R. Dangovski, V. Drensky, Ş. Fındık, Weitzenböck derivations of free metabelian Lie algebras, Linear Algebra and its Applications, 439 10, 3279-3296 (2013).
  • Reference9 Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), ”Nauka”, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987.
  • Reference10 A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994. www-users.mat.umk.pl/\~{}anow/ps-dvi/pol-der.pdf.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Andre Dushımırımana 0000-0002-7486-2557

Publication Date July 31, 2022
Submission Date July 14, 2022
Acceptance Date July 23, 2022
Published in Issue Year 2022

Cite

APA Dushımırımana, A. (2022). ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. Journal of Universal Mathematics, 5(2), 185-192. https://doi.org/10.33773/jum.1143787
AMA Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. July 2022;5(2):185-192. doi:10.33773/jum.1143787
Chicago Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics 5, no. 2 (July 2022): 185-92. https://doi.org/10.33773/jum.1143787.
EndNote Dushımırımana A (July 1, 2022) ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. Journal of Universal Mathematics 5 2 185–192.
IEEE A. Dushımırımana, “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”, JUM, vol. 5, no. 2, pp. 185–192, 2022, doi: 10.33773/jum.1143787.
ISNAD Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics 5/2 (July 2022), 185-192. https://doi.org/10.33773/jum.1143787.
JAMA Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. 2022;5:185–192.
MLA Dushımırımana, Andre. “ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS”. Journal of Universal Mathematics, vol. 5, no. 2, 2022, pp. 185-92, doi:10.33773/jum.1143787.
Vancouver Dushımırımana A. ON THE ALGEBRA OF CONSTANTS OF FREE METABELIAN LIE ALGEBRAS. JUM. 2022;5(2):185-92.