Research Article
BibTex RIS Cite
Year 2023, , 239 - 253, 31.07.2023
https://doi.org/10.33773/jum.1195108

Abstract

References

  • E. Bishop, Foundations of Constructive Analysis, New York: McGraw-Hill, (1967).
  • D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, Cambridge: London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, (1987). A. Cherubini and A. Frigeri, Inverse semigroups with apartness, Semigroup Forum, 98(3), 571--588 (2019).
  • R. Chinram and K. Tinpun, Isomorphism theorems for $\Gamma$-semigroups and ordered $\Gamma$-semigroups, Thai Journal of Mathematics, 7(2), 231-–241 (2009).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Semigroups with apartness, Math. Logic Quarterly, 59(6), 407--414 (2013).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Basic notions of (Constructive) semigroups with apartness, Semigroup Forum, 92(3), 659--674 (2016).
  • H. Hedayati, Isomorphisms via congruences on $\Gamma$-semigroups and $\Gamma$-ideals, Thai J. Math., 11(3), 563--575 (2013).
  • N. Kehayopulu, On ordered $\Gamma$-semigroups. Sci. Math. Japonicae Online, e-2010, 37-–43 (2013).
  • Y. I. Kwon amd S. K. Li, Some special elements in ordered $\Gamma$-semigroups, Kyungpook Math. J., 35(3), 679--685 (1996).
  • R. Mines, F. Richman and W. Ruitenburg, A course of constructive algebra, Springer-Verlag, New York (1988).
  • D. A. Romano, Some relations and subsets of semigroup with apartness generated by the principal consistent subset, Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, {13}, 7--25 (2002).
  • D. A. Romano, A note on quasi-antiorder in semigroup, Novi Sad J. Math., 37(1), 3--8 (2007).
  • D. A. Romano, An isomorphism theorem for anti-ordered sets, Filomat, 22(1), 145--160 (2008).
  • D. A. Romano, On quasi-antiorder relation on semigroups, Mat. Vesn., 64(3), 190--199 (2012).
  • D. A. Romano, $\Gamma$-semigroups with apartness, Bull. Allahabad Math. Soc., 34(1), 71--83 (2019).
  • D. A. Romano, Some algebraic structures with apartness, A review, J. Int. Math. Virtual Inst., 9(2), 361--395 (2019).
  • D. A. Romano, Semilattice co-congruence in $\Gamma$-semigroups, Turkish Journal of Mathematics and Computer Science, 12(1), 1--7 (2020).
  • D. A. Romano, Co-filters in $\Gamma$-semigroups ordered under co-order, An. \c{S}tiin\c{t}. Univ. Al. I. Cuza Ia\c{s}i, Ser. Nou\u{a}, Mat., 67(1), 11--18 (2021).
  • D. A. Romano. On co-filters in semigroup with apartness. \emph{Kragujevac J. Math.}, \textbf{45}(4)(2021), 607-–613.
  • M. K Sen, On $\Gamma$-semigroups. In Proceeding of International Conference on 'Algebra and its Applications, (New Delhi, 1981)', (pp. 301--308). Lecture Notes in Pure and Appl. Math. 9, New York: Decker Publication, (1984).
  • M. K. Sen and N. K. Saha, On $\Gamma$-semigroup, I. Bull. Calcutta Math. Soc., 78, 181--186 (1986).
  • A. Seth, $\Gamma$-group congruence on regular $\Gamma$-semigroups, Inter. J. Math. Math. Sci., 15(1), 103--106 (1992).
  • M. Siripitukdet and A. Iampan, On the least (ordered) semilattice congruence in ordered $\Gamma$-semigroups, Thai J. Math., 4(2), 403--415 (2006).
  • A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction, Amsterdam: North-Holland, (1988).

THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS

Year 2023, , 239 - 253, 31.07.2023
https://doi.org/10.33773/jum.1195108

Abstract

The notion of $\Gamma$-semigroups has been introduced by Sen and Saha in 1986. This author introduced the concept of $\Gamma$-semigroups with apartness and analyzed
their properties within the Bishop's constructive orientation. Many classical notions and processes of semigroups and $\Gamma$-semigroups have been extended to $\Gamma$-semigroups with apartness. Co-ordered $\Gamma$-semigroups with apartness have been studied by the author also. In this paper, as a continuation of previous research, the author investigates the specificity of two forms of the first isomorphism theorem for (co-ordered) $\Gamma$-semigroups with apartness which one of them has no a counterpart in the Classical case. In addition,
specific techniques used in proofs within algebraic Bishop's constructive orientation are exposed.

References

  • E. Bishop, Foundations of Constructive Analysis, New York: McGraw-Hill, (1967).
  • D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, Cambridge: London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, (1987). A. Cherubini and A. Frigeri, Inverse semigroups with apartness, Semigroup Forum, 98(3), 571--588 (2019).
  • R. Chinram and K. Tinpun, Isomorphism theorems for $\Gamma$-semigroups and ordered $\Gamma$-semigroups, Thai Journal of Mathematics, 7(2), 231-–241 (2009).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Semigroups with apartness, Math. Logic Quarterly, 59(6), 407--414 (2013).
  • S. Crvenkovi\'c, M. Mitrovi\'c and D. A. Romano, Basic notions of (Constructive) semigroups with apartness, Semigroup Forum, 92(3), 659--674 (2016).
  • H. Hedayati, Isomorphisms via congruences on $\Gamma$-semigroups and $\Gamma$-ideals, Thai J. Math., 11(3), 563--575 (2013).
  • N. Kehayopulu, On ordered $\Gamma$-semigroups. Sci. Math. Japonicae Online, e-2010, 37-–43 (2013).
  • Y. I. Kwon amd S. K. Li, Some special elements in ordered $\Gamma$-semigroups, Kyungpook Math. J., 35(3), 679--685 (1996).
  • R. Mines, F. Richman and W. Ruitenburg, A course of constructive algebra, Springer-Verlag, New York (1988).
  • D. A. Romano, Some relations and subsets of semigroup with apartness generated by the principal consistent subset, Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, {13}, 7--25 (2002).
  • D. A. Romano, A note on quasi-antiorder in semigroup, Novi Sad J. Math., 37(1), 3--8 (2007).
  • D. A. Romano, An isomorphism theorem for anti-ordered sets, Filomat, 22(1), 145--160 (2008).
  • D. A. Romano, On quasi-antiorder relation on semigroups, Mat. Vesn., 64(3), 190--199 (2012).
  • D. A. Romano, $\Gamma$-semigroups with apartness, Bull. Allahabad Math. Soc., 34(1), 71--83 (2019).
  • D. A. Romano, Some algebraic structures with apartness, A review, J. Int. Math. Virtual Inst., 9(2), 361--395 (2019).
  • D. A. Romano, Semilattice co-congruence in $\Gamma$-semigroups, Turkish Journal of Mathematics and Computer Science, 12(1), 1--7 (2020).
  • D. A. Romano, Co-filters in $\Gamma$-semigroups ordered under co-order, An. \c{S}tiin\c{t}. Univ. Al. I. Cuza Ia\c{s}i, Ser. Nou\u{a}, Mat., 67(1), 11--18 (2021).
  • D. A. Romano. On co-filters in semigroup with apartness. \emph{Kragujevac J. Math.}, \textbf{45}(4)(2021), 607-–613.
  • M. K Sen, On $\Gamma$-semigroups. In Proceeding of International Conference on 'Algebra and its Applications, (New Delhi, 1981)', (pp. 301--308). Lecture Notes in Pure and Appl. Math. 9, New York: Decker Publication, (1984).
  • M. K. Sen and N. K. Saha, On $\Gamma$-semigroup, I. Bull. Calcutta Math. Soc., 78, 181--186 (1986).
  • A. Seth, $\Gamma$-group congruence on regular $\Gamma$-semigroups, Inter. J. Math. Math. Sci., 15(1), 103--106 (1992).
  • M. Siripitukdet and A. Iampan, On the least (ordered) semilattice congruence in ordered $\Gamma$-semigroups, Thai J. Math., 4(2), 403--415 (2006).
  • A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction, Amsterdam: North-Holland, (1988).
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Daniel A. Romano 0000-0003-1148-3258

Publication Date July 31, 2023
Submission Date October 26, 2022
Acceptance Date July 31, 2023
Published in Issue Year 2023

Cite

APA Romano, D. A. (2023). THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. Journal of Universal Mathematics, 6(2), 239-253. https://doi.org/10.33773/jum.1195108
AMA Romano DA. THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. JUM. July 2023;6(2):239-253. doi:10.33773/jum.1195108
Chicago Romano, Daniel A. “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”. Journal of Universal Mathematics 6, no. 2 (July 2023): 239-53. https://doi.org/10.33773/jum.1195108.
EndNote Romano DA (July 1, 2023) THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. Journal of Universal Mathematics 6 2 239–253.
IEEE D. A. Romano, “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”, JUM, vol. 6, no. 2, pp. 239–253, 2023, doi: 10.33773/jum.1195108.
ISNAD Romano, Daniel A. “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”. Journal of Universal Mathematics 6/2 (July 2023), 239-253. https://doi.org/10.33773/jum.1195108.
JAMA Romano DA. THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. JUM. 2023;6:239–253.
MLA Romano, Daniel A. “THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS”. Journal of Universal Mathematics, vol. 6, no. 2, 2023, pp. 239-53, doi:10.33773/jum.1195108.
Vancouver Romano DA. THE FIRST ISOMORPHISM THEOREM FOR (CO-ORDERED) $\Gamma$-SEMIGROUPS WITH APARTNESS. JUM. 2023;6(2):239-53.