Research Article
BibTex RIS Cite

ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES

Year 2024, , 128 - 137, 29.12.2024
https://doi.org/10.33773/jum.1518403

Abstract

This study explores the formation of polynomials of at most degree $n$ using the first $n+1$ terms of the Jacobsthal and Jacobsthal-Lucas sequences through Lagrange interpolation. The paper provides a detailed examination of the recurrence relations and various identities associated with the Jacobsthal and Jacobsthal-Lucas Lagrange Interpolation Polynomials.

References

  • M. Asci, E. GUrel, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Numbers, Ars Combinatoria, Vol.5, No.111, pp.53-62 (2013).
  • P. Catarino, P. Vasco, H. Campos, A. P. Aires, A. Borges, New families of Jacobsthal and Jacobsthal-Lucas numbers, Algebra and Discrete Mathematics, vol.20, No.1, (2015).
  • G. Cerda-Morales, On bicomplex third-order Jacobsthal numbers, Complex Variables and Elliptic Equations, Vol.68, No.1, pp.44-56 (2023).
  • C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. In Annales mathematicae et informaticae, pp. 27-39 (2013).
  • C. B. Cimen, A. Ipek, On jacobsthal and jacobsthal–lucas octonions, Mediterranean Journal of Mathematics, Vol.14, pp.1-13 (2017).
  • A. DaSdemir, On the Jacobsthal numbers by matrix method. SUleyman Demirel University Faculty of Arts and Science Journal of Science, vol.7, No.1, pp.69-76 (2012).
  • O. Deveci and G. Artun, On the adjacency-Jacobsthal numbers, Communications in Algebra, vol.47, No.11, pp.4520-4532 (2019).
  • C. M. Dikmen, Hyperbolic jacobsthal numbers, Asian Research Journal of Mathematics, Vol.15, No.4, pp.1-9 (2019). O. Diskaya, H. Menken, On the Jacobsthal and Jacobsthal-Lucas Subscripts, J. Algebra Comput. Appl, Vol.8, pp.1-6 (2019).
  • V. E. Hoggatt Jr, M. Bicknell-Johnson, Convolution arrays for Jacobsthal and Fibonacci polynomials, The Fibonacci Quarterly, Vol.16, No.5, pp.385-402 (1978).
  • A. F. Horadam, Jacobsthal representation numbers, significance, Vol.2, pp.2-8 (1996).
  • C. KızılateS, On the Quadra Lucas-Jacobsthal Numbers, Karaelmas Science Engineering Journal/Karaelmas Fen ve MUhendislik Dergisi, Vol.7, No.2, (2017).
  • J. Kiusalaas, Numerical methods in engineering with Python. Cambridge university press, (2010). E. Ozkan, B. Kuloglu, On a Jacobsthal-like sequence associated with k-Jacobsthal-Lucas sequence. Journal of Contemporary Applied Mathematics, Vol.10, No.2, pp. 3-13, (2020).
  • E. Ozkan, M. Uysal, B. Kuloglu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials. Asian-European Journal of Mathematics, Vol.15, No.06, pp. 2250119, (2022).
  • B. Kuloğlu, E. Ozkan, Applications of Jacobsthal and Jacobsthal-Lucas Numbers in Coding Theory, pp. 54-64, (2023).
  • M. S. U. Mufid, T. Asfihani, L. Hanafi, On the Lagrange interpolation of Fibonacci sequence, (IJCSAM) International Journal of Computing Science and Applied Mathematics, Vol.2, No.3, pp.38-40 (2016).
  • E. Ozkan, M. Uysal, On quaternions with higher order Jacobsthal numbers components, Gazi University Journal of Science, pp.1-1 (2023).
  • E. E. Polatlı, Y. Soykan On generalized third-order Jacobsthal numbers, Asian Research Journal of Mathematics, Vol.17, No.2, pp.1-19, (2021).
  • E. SUli, D. F. Mayers, An introduction to numerical analysis, Cambridge university press, (2003).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A001045). https://oeis.org/A001045, (1973).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A014551). https://oeis.org/A014551, (1973).
  • S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences, Vol.70, No.9, pp.3467-3476 (2015).
Year 2024, , 128 - 137, 29.12.2024
https://doi.org/10.33773/jum.1518403

Abstract

References

  • M. Asci, E. GUrel, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Numbers, Ars Combinatoria, Vol.5, No.111, pp.53-62 (2013).
  • P. Catarino, P. Vasco, H. Campos, A. P. Aires, A. Borges, New families of Jacobsthal and Jacobsthal-Lucas numbers, Algebra and Discrete Mathematics, vol.20, No.1, (2015).
  • G. Cerda-Morales, On bicomplex third-order Jacobsthal numbers, Complex Variables and Elliptic Equations, Vol.68, No.1, pp.44-56 (2023).
  • C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. In Annales mathematicae et informaticae, pp. 27-39 (2013).
  • C. B. Cimen, A. Ipek, On jacobsthal and jacobsthal–lucas octonions, Mediterranean Journal of Mathematics, Vol.14, pp.1-13 (2017).
  • A. DaSdemir, On the Jacobsthal numbers by matrix method. SUleyman Demirel University Faculty of Arts and Science Journal of Science, vol.7, No.1, pp.69-76 (2012).
  • O. Deveci and G. Artun, On the adjacency-Jacobsthal numbers, Communications in Algebra, vol.47, No.11, pp.4520-4532 (2019).
  • C. M. Dikmen, Hyperbolic jacobsthal numbers, Asian Research Journal of Mathematics, Vol.15, No.4, pp.1-9 (2019). O. Diskaya, H. Menken, On the Jacobsthal and Jacobsthal-Lucas Subscripts, J. Algebra Comput. Appl, Vol.8, pp.1-6 (2019).
  • V. E. Hoggatt Jr, M. Bicknell-Johnson, Convolution arrays for Jacobsthal and Fibonacci polynomials, The Fibonacci Quarterly, Vol.16, No.5, pp.385-402 (1978).
  • A. F. Horadam, Jacobsthal representation numbers, significance, Vol.2, pp.2-8 (1996).
  • C. KızılateS, On the Quadra Lucas-Jacobsthal Numbers, Karaelmas Science Engineering Journal/Karaelmas Fen ve MUhendislik Dergisi, Vol.7, No.2, (2017).
  • J. Kiusalaas, Numerical methods in engineering with Python. Cambridge university press, (2010). E. Ozkan, B. Kuloglu, On a Jacobsthal-like sequence associated with k-Jacobsthal-Lucas sequence. Journal of Contemporary Applied Mathematics, Vol.10, No.2, pp. 3-13, (2020).
  • E. Ozkan, M. Uysal, B. Kuloglu, Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials. Asian-European Journal of Mathematics, Vol.15, No.06, pp. 2250119, (2022).
  • B. Kuloğlu, E. Ozkan, Applications of Jacobsthal and Jacobsthal-Lucas Numbers in Coding Theory, pp. 54-64, (2023).
  • M. S. U. Mufid, T. Asfihani, L. Hanafi, On the Lagrange interpolation of Fibonacci sequence, (IJCSAM) International Journal of Computing Science and Applied Mathematics, Vol.2, No.3, pp.38-40 (2016).
  • E. Ozkan, M. Uysal, On quaternions with higher order Jacobsthal numbers components, Gazi University Journal of Science, pp.1-1 (2023).
  • E. E. Polatlı, Y. Soykan On generalized third-order Jacobsthal numbers, Asian Research Journal of Mathematics, Vol.17, No.2, pp.1-19, (2021).
  • E. SUli, D. F. Mayers, An introduction to numerical analysis, Cambridge university press, (2003).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A001045). https://oeis.org/A001045, (1973).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, (A014551). https://oeis.org/A014551, (1973).
  • S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences, Vol.70, No.9, pp.3467-3476 (2015).
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Orhan Dişkaya 0000-0001-5698-7834

Publication Date December 29, 2024
Submission Date July 18, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024

Cite

APA Dişkaya, O. (2024). ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 128-137. https://doi.org/10.33773/jum.1518403
AMA Dişkaya O. ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. JUM. December 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):128-137. doi:10.33773/jum.1518403
Chicago Dişkaya, Orhan. “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”. Journal of Universal Mathematics 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024): 128-37. https://doi.org/10.33773/jum.1518403.
EndNote Dişkaya O (December 1, 2024) ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 128–137.
IEEE O. Dişkaya, “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”, JUM, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", pp. 128–137, 2024, doi: 10.33773/jum.1518403.
ISNAD Dişkaya, Orhan. “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024), 128-137. https://doi.org/10.33773/jum.1518403.
JAMA Dişkaya O. ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. JUM. 2024;7:128–137.
MLA Dişkaya, Orhan. “ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES”. Journal of Universal Mathematics, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, pp. 128-37, doi:10.33773/jum.1518403.
Vancouver Dişkaya O. ON THE LAGRANGE INTERPOLATIONS OF THE JACOBSTHAL AND JACOBSTHAL-LUCAS SEQUENCES. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):128-37.