Research Article
BibTex RIS Cite
Year 2019, , 75 - 81, 30.01.2019
https://doi.org/10.33773/jum.506493

Abstract

References

  • A. O. Oğrenmis, M. Bektaş, M. Ergut, On the helices in the Galilean space G3, Iranian Journal of science & Technology, Transaction A, 31, 177-181, (2007). A. O. Oğrenmis, M. Yenero_glu, Inextensible curves in the Galilean space, International Journal of the Physical Sciences, 5(9),1424-1427,(2010).A. O. Oğrenmis, On curvatures of a frenet curve in the pseudo-Galilean space G31 Inter. J. Phys.Sci. 5, 2363-2365, (2010).B. Divjak and M. Sipus, Some special surfaces in the pseudo-Galilean space,Acta Math. Hungar. 118, 209-229,(2008). D. Y. Kwon , FC. Park, DP Chi, Inextensible ows of curves and developable surfaces, Applied Mathematics Letters 18, 1156-1162, (2005). D.Y. Kwon, F.C. Park, , Evolution of inelastic plane curves, Appl. Math. Lett., 12,115-119, (1999).D.J. Unger, Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract. 50, 33-38, (1991). D. Lati_, A. Razavi, Inextensible ows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16), 761-768, (2008).E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry, 38 (2), 261-288, (1997).G. Chirikjian, J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10,343-354, (1994).H. Oztekin and H. Gün Bozok, Inextensible ows of curves according to Sabban frame in pseudo-Galilean space G13 , i-managers Journal on Mathematics, Vol.2, N.1, pp.1-12, (2013).H. Mochiyama, E. Shimemura, H. Kobayashi, Shape control of manipulators with hyper degrees of freedom, Int. J. Robot.Res.,18, 584-600, (1999).H.Q. Lu, J.S. Todhunter, T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP,Image Underst. 56, 265-285, (1993).I.M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, (1979).I. Kamenarovic, Existence Theorems for Ruled Surfaces in the Galilean Space G3. Rad HAZU Math. 10, 183-196,(1991).J. Koenderink, Solid shape, MIT Press, Cambridge, MA, (1990).M. Ergut, E. Turhan, T. Körpinar, Characterization of inextensible ows of spacelike curves with Sabban frame in S2 1 , Bol. Soc. Paran. Mat. 31(2), 47-53, (2013).M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, in: Proc. 1st Int. Conference on Computer Vision, 259-268 (1987).M. Desbrun, M.-P. Cani-Gascuel, Active implicit surface for animation, in: Proc. Graphics Interface-Canadian Inf. Process. Soc., 143-150, (1998). O. Roschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, (1984).Z. M. Sipus, Ruled Weingarten surfaces in the Galilean space, Periodica Mathematica Hungarica, 56(2), 213-225, (2008).

INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3

Year 2019, , 75 - 81, 30.01.2019
https://doi.org/10.33773/jum.506493

Abstract

In this paper inextensible  ows of curves in 3-dimensional Galilean space is researched. Firstly Sabban frame is dened in 3-dimensional Galilean space, then necessary and sucient conditions for inextensible ows of curves with Sabban frame in 3-dimensional Galilean space are given. Also inextensible curve  ow are expressed as a partial dierential equation involving geodesic curvature according to this frame.

References

  • A. O. Oğrenmis, M. Bektaş, M. Ergut, On the helices in the Galilean space G3, Iranian Journal of science & Technology, Transaction A, 31, 177-181, (2007). A. O. Oğrenmis, M. Yenero_glu, Inextensible curves in the Galilean space, International Journal of the Physical Sciences, 5(9),1424-1427,(2010).A. O. Oğrenmis, On curvatures of a frenet curve in the pseudo-Galilean space G31 Inter. J. Phys.Sci. 5, 2363-2365, (2010).B. Divjak and M. Sipus, Some special surfaces in the pseudo-Galilean space,Acta Math. Hungar. 118, 209-229,(2008). D. Y. Kwon , FC. Park, DP Chi, Inextensible ows of curves and developable surfaces, Applied Mathematics Letters 18, 1156-1162, (2005). D.Y. Kwon, F.C. Park, , Evolution of inelastic plane curves, Appl. Math. Lett., 12,115-119, (1999).D.J. Unger, Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract. 50, 33-38, (1991). D. Lati_, A. Razavi, Inextensible ows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16), 761-768, (2008).E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry, 38 (2), 261-288, (1997).G. Chirikjian, J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10,343-354, (1994).H. Oztekin and H. Gün Bozok, Inextensible ows of curves according to Sabban frame in pseudo-Galilean space G13 , i-managers Journal on Mathematics, Vol.2, N.1, pp.1-12, (2013).H. Mochiyama, E. Shimemura, H. Kobayashi, Shape control of manipulators with hyper degrees of freedom, Int. J. Robot.Res.,18, 584-600, (1999).H.Q. Lu, J.S. Todhunter, T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP,Image Underst. 56, 265-285, (1993).I.M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, (1979).I. Kamenarovic, Existence Theorems for Ruled Surfaces in the Galilean Space G3. Rad HAZU Math. 10, 183-196,(1991).J. Koenderink, Solid shape, MIT Press, Cambridge, MA, (1990).M. Ergut, E. Turhan, T. Körpinar, Characterization of inextensible ows of spacelike curves with Sabban frame in S2 1 , Bol. Soc. Paran. Mat. 31(2), 47-53, (2013).M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, in: Proc. 1st Int. Conference on Computer Vision, 259-268 (1987).M. Desbrun, M.-P. Cani-Gascuel, Active implicit surface for animation, in: Proc. Graphics Interface-Canadian Inf. Process. Soc., 143-150, (1998). O. Roschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, (1984).Z. M. Sipus, Ruled Weingarten surfaces in the Galilean space, Periodica Mathematica Hungarica, 56(2), 213-225, (2008).
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Hülya Gün Bozok

Publication Date January 30, 2019
Submission Date January 2, 2019
Acceptance Date January 14, 2019
Published in Issue Year 2019

Cite

APA Gün Bozok, H. (2019). INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. Journal of Universal Mathematics, 2(1), 75-81. https://doi.org/10.33773/jum.506493
AMA Gün Bozok H. INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. JUM. January 2019;2(1):75-81. doi:10.33773/jum.506493
Chicago Gün Bozok, Hülya. “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”. Journal of Universal Mathematics 2, no. 1 (January 2019): 75-81. https://doi.org/10.33773/jum.506493.
EndNote Gün Bozok H (January 1, 2019) INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. Journal of Universal Mathematics 2 1 75–81.
IEEE H. Gün Bozok, “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”, JUM, vol. 2, no. 1, pp. 75–81, 2019, doi: 10.33773/jum.506493.
ISNAD Gün Bozok, Hülya. “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”. Journal of Universal Mathematics 2/1 (January 2019), 75-81. https://doi.org/10.33773/jum.506493.
JAMA Gün Bozok H. INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. JUM. 2019;2:75–81.
MLA Gün Bozok, Hülya. “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”. Journal of Universal Mathematics, vol. 2, no. 1, 2019, pp. 75-81, doi:10.33773/jum.506493.
Vancouver Gün Bozok H. INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. JUM. 2019;2(1):75-81.