A. O. Oğrenmis, M. Bektaş, M. Ergut, On the helices in the Galilean space G3, Iranian Journal of science & Technology, Transaction A, 31, 177-181, (2007). A. O. Oğrenmis, M. Yenero_glu, Inextensible curves in the Galilean space, International Journal of the Physical Sciences, 5(9),1424-1427,(2010).A. O. Oğrenmis, On curvatures of a frenet curve in the pseudo-Galilean space G31 Inter. J. Phys.Sci. 5, 2363-2365, (2010).B. Divjak and M. Sipus, Some special surfaces in the pseudo-Galilean space,Acta Math. Hungar. 118, 209-229,(2008). D. Y. Kwon , FC. Park, DP Chi, Inextensible ows of curves and developable surfaces, Applied Mathematics Letters 18, 1156-1162, (2005). D.Y. Kwon, F.C. Park, , Evolution of inelastic plane curves, Appl. Math. Lett., 12,115-119, (1999).D.J. Unger, Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract. 50, 33-38, (1991). D. Lati_, A. Razavi, Inextensible ows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16), 761-768, (2008).E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry, 38 (2), 261-288, (1997).G. Chirikjian, J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10,343-354, (1994).H. Oztekin and H. Gün Bozok, Inextensible ows of curves according to Sabban frame in pseudo-Galilean space G13 , i-managers Journal on Mathematics, Vol.2, N.1, pp.1-12, (2013).H. Mochiyama, E. Shimemura, H. Kobayashi, Shape control of manipulators with hyper degrees of freedom, Int. J. Robot.Res.,18, 584-600, (1999).H.Q. Lu, J.S. Todhunter, T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP,Image Underst. 56, 265-285, (1993).I.M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, (1979).I. Kamenarovic, Existence Theorems for Ruled Surfaces in the Galilean Space G3. Rad HAZU Math. 10, 183-196,(1991).J. Koenderink, Solid shape, MIT Press, Cambridge, MA, (1990).M. Ergut, E. Turhan, T. Körpinar, Characterization of inextensible ows of spacelike curves with Sabban frame in S2 1 , Bol. Soc. Paran. Mat. 31(2), 47-53, (2013).M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, in: Proc. 1st Int. Conference on Computer Vision, 259-268 (1987).M. Desbrun, M.-P. Cani-Gascuel, Active implicit surface for animation, in: Proc. Graphics Interface-Canadian Inf. Process. Soc., 143-150, (1998). O. Roschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, (1984).Z. M. Sipus, Ruled Weingarten surfaces in the Galilean space, Periodica Mathematica Hungarica, 56(2), 213-225, (2008).
INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3
In this paper inextensible ows of curves in 3-dimensional Galilean space is researched. Firstly Sabban frame is dened in 3-dimensional Galilean space, then necessary and sucient conditions for inextensible ows of curves with Sabban frame in 3-dimensional Galilean space are given. Also inextensible curve ow are expressed as a partial dierential equation involving geodesic curvature according to this frame.
A. O. Oğrenmis, M. Bektaş, M. Ergut, On the helices in the Galilean space G3, Iranian Journal of science & Technology, Transaction A, 31, 177-181, (2007). A. O. Oğrenmis, M. Yenero_glu, Inextensible curves in the Galilean space, International Journal of the Physical Sciences, 5(9),1424-1427,(2010).A. O. Oğrenmis, On curvatures of a frenet curve in the pseudo-Galilean space G31 Inter. J. Phys.Sci. 5, 2363-2365, (2010).B. Divjak and M. Sipus, Some special surfaces in the pseudo-Galilean space,Acta Math. Hungar. 118, 209-229,(2008). D. Y. Kwon , FC. Park, DP Chi, Inextensible ows of curves and developable surfaces, Applied Mathematics Letters 18, 1156-1162, (2005). D.Y. Kwon, F.C. Park, , Evolution of inelastic plane curves, Appl. Math. Lett., 12,115-119, (1999).D.J. Unger, Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract. 50, 33-38, (1991). D. Lati_, A. Razavi, Inextensible ows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16), 761-768, (2008).E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry, 38 (2), 261-288, (1997).G. Chirikjian, J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10,343-354, (1994).H. Oztekin and H. Gün Bozok, Inextensible ows of curves according to Sabban frame in pseudo-Galilean space G13 , i-managers Journal on Mathematics, Vol.2, N.1, pp.1-12, (2013).H. Mochiyama, E. Shimemura, H. Kobayashi, Shape control of manipulators with hyper degrees of freedom, Int. J. Robot.Res.,18, 584-600, (1999).H.Q. Lu, J.S. Todhunter, T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP,Image Underst. 56, 265-285, (1993).I.M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, (1979).I. Kamenarovic, Existence Theorems for Ruled Surfaces in the Galilean Space G3. Rad HAZU Math. 10, 183-196,(1991).J. Koenderink, Solid shape, MIT Press, Cambridge, MA, (1990).M. Ergut, E. Turhan, T. Körpinar, Characterization of inextensible ows of spacelike curves with Sabban frame in S2 1 , Bol. Soc. Paran. Mat. 31(2), 47-53, (2013).M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, in: Proc. 1st Int. Conference on Computer Vision, 259-268 (1987).M. Desbrun, M.-P. Cani-Gascuel, Active implicit surface for animation, in: Proc. Graphics Interface-Canadian Inf. Process. Soc., 143-150, (1998). O. Roschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, (1984).Z. M. Sipus, Ruled Weingarten surfaces in the Galilean space, Periodica Mathematica Hungarica, 56(2), 213-225, (2008).
Gün Bozok, H. (2019). INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. Journal of Universal Mathematics, 2(1), 75-81. https://doi.org/10.33773/jum.506493
AMA
Gün Bozok H. INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. JUM. January 2019;2(1):75-81. doi:10.33773/jum.506493
Chicago
Gün Bozok, Hülya. “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”. Journal of Universal Mathematics 2, no. 1 (January 2019): 75-81. https://doi.org/10.33773/jum.506493.
EndNote
Gün Bozok H (January 1, 2019) INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. Journal of Universal Mathematics 2 1 75–81.
IEEE
H. Gün Bozok, “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”, JUM, vol. 2, no. 1, pp. 75–81, 2019, doi: 10.33773/jum.506493.
ISNAD
Gün Bozok, Hülya. “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”. Journal of Universal Mathematics 2/1 (January 2019), 75-81. https://doi.org/10.33773/jum.506493.
JAMA
Gün Bozok H. INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. JUM. 2019;2:75–81.
MLA
Gün Bozok, Hülya. “INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3”. Journal of Universal Mathematics, vol. 2, no. 1, 2019, pp. 75-81, doi:10.33773/jum.506493.
Vancouver
Gün Bozok H. INEXTENSIBLE FLOWS OF CURVES ACCORDING TO SABBAN FRAME IN GALILEAN SPACE G3. JUM. 2019;2(1):75-81.