Research Article
BibTex RIS Cite

BIPOLAR SOFT FILTER

Year 2020, , 21 - 27, 31.01.2020
https://doi.org/10.33773/jum.679829

Abstract

In this study, we present bipolar soft filters which are defined over an initial universe using a fixed parameter set. At the same time, the concepts
of bipolar soft filter subbase and bipolar soft filter base are given. In addition, we give examples in order to better understand the subject in our paper.

References

  • A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., Vol. 21, N. 1, pp. 113-119, (2012).
  • N. Çağman, S. Karataş, S. Enginoğlu , Soft topology, Comput. Math. Appl., Vol. 62, pp. 351-358, (2011).
  • S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 4058-4067, (2011).
  • F. Karaaslan and S. Karatas, A new approach to bipolar soft sets and its applications, Discrete Math. Algorithm. Appl., 07, 1550054, (2015).
  • P.K. Maji, R. Biswas, and A.R. Roy, Soft set theory, Computers and Mathematics with Applications, Vol. 45 N. 4-5, pp. 555-562, (2003).
  • W.K. Min, A note on soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 3524-3528, (2011).
  • D. Molodtsov, Soft set theory first results, Comput. Math. Appl., Vol. 37, pp. 19-31, (1999).
  • B. Pazar Varol, H. Aygün, On soft hausdorff spaces, Ann. Fuzzy Math. Inf., Vol. 5, N. 1, pp. 15-24, (2013).
  • M. Shabir, M. Naz , On soft topological spaces, Comput. Math. Appl., 61, 1786-1799, (2011).
  • M. Shabir and M. Naz, On Bipolar Soft Sets, arXiv: 1303.1344v1 [math.LO], (2013).
  • M. Shabir and A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, Songklanakari J. Sci. Technol., Vol. 39, N. 3, pp. 359-371, (2017).
  • Ş. Yüksel, N. Tozlu, G.Z. Ergül, Soft Filter, Math Sci., Vol. 8, N. 119, (2014).
  • İ. Zorlutuna, M. Akdağ, W.K. Min, S. Atmaca, Remarks On soft topological spaces, Ann. Fuzzy Math. Inf., Vol. 3, N. 2, pp. 171-185, (2012).
  • Y.T. Öztürk, On Bipolar Soft Topological Space, Journal of New Theory, Vol. 20, pp. 64-75, (2018).
Year 2020, , 21 - 27, 31.01.2020
https://doi.org/10.33773/jum.679829

Abstract

References

  • A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., Vol. 21, N. 1, pp. 113-119, (2012).
  • N. Çağman, S. Karataş, S. Enginoğlu , Soft topology, Comput. Math. Appl., Vol. 62, pp. 351-358, (2011).
  • S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 4058-4067, (2011).
  • F. Karaaslan and S. Karatas, A new approach to bipolar soft sets and its applications, Discrete Math. Algorithm. Appl., 07, 1550054, (2015).
  • P.K. Maji, R. Biswas, and A.R. Roy, Soft set theory, Computers and Mathematics with Applications, Vol. 45 N. 4-5, pp. 555-562, (2003).
  • W.K. Min, A note on soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 3524-3528, (2011).
  • D. Molodtsov, Soft set theory first results, Comput. Math. Appl., Vol. 37, pp. 19-31, (1999).
  • B. Pazar Varol, H. Aygün, On soft hausdorff spaces, Ann. Fuzzy Math. Inf., Vol. 5, N. 1, pp. 15-24, (2013).
  • M. Shabir, M. Naz , On soft topological spaces, Comput. Math. Appl., 61, 1786-1799, (2011).
  • M. Shabir and M. Naz, On Bipolar Soft Sets, arXiv: 1303.1344v1 [math.LO], (2013).
  • M. Shabir and A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, Songklanakari J. Sci. Technol., Vol. 39, N. 3, pp. 359-371, (2017).
  • Ş. Yüksel, N. Tozlu, G.Z. Ergül, Soft Filter, Math Sci., Vol. 8, N. 119, (2014).
  • İ. Zorlutuna, M. Akdağ, W.K. Min, S. Atmaca, Remarks On soft topological spaces, Ann. Fuzzy Math. Inf., Vol. 3, N. 2, pp. 171-185, (2012).
  • Y.T. Öztürk, On Bipolar Soft Topological Space, Journal of New Theory, Vol. 20, pp. 64-75, (2018).
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Orhan Dalkılıç

Naime Demirtaş

Publication Date January 31, 2020
Submission Date January 24, 2020
Acceptance Date February 27, 2020
Published in Issue Year 2020

Cite

APA Dalkılıç, O., & Demirtaş, N. (2020). BIPOLAR SOFT FILTER. Journal of Universal Mathematics, 3(1), 21-27. https://doi.org/10.33773/jum.679829
AMA Dalkılıç O, Demirtaş N. BIPOLAR SOFT FILTER. JUM. January 2020;3(1):21-27. doi:10.33773/jum.679829
Chicago Dalkılıç, Orhan, and Naime Demirtaş. “BIPOLAR SOFT FILTER”. Journal of Universal Mathematics 3, no. 1 (January 2020): 21-27. https://doi.org/10.33773/jum.679829.
EndNote Dalkılıç O, Demirtaş N (January 1, 2020) BIPOLAR SOFT FILTER. Journal of Universal Mathematics 3 1 21–27.
IEEE O. Dalkılıç and N. Demirtaş, “BIPOLAR SOFT FILTER”, JUM, vol. 3, no. 1, pp. 21–27, 2020, doi: 10.33773/jum.679829.
ISNAD Dalkılıç, Orhan - Demirtaş, Naime. “BIPOLAR SOFT FILTER”. Journal of Universal Mathematics 3/1 (January 2020), 21-27. https://doi.org/10.33773/jum.679829.
JAMA Dalkılıç O, Demirtaş N. BIPOLAR SOFT FILTER. JUM. 2020;3:21–27.
MLA Dalkılıç, Orhan and Naime Demirtaş. “BIPOLAR SOFT FILTER”. Journal of Universal Mathematics, vol. 3, no. 1, 2020, pp. 21-27, doi:10.33773/jum.679829.
Vancouver Dalkılıç O, Demirtaş N. BIPOLAR SOFT FILTER. JUM. 2020;3(1):21-7.

Cited By