Research Article
BibTex RIS Cite
Year 2021, , 51 - 61, 31.01.2021
https://doi.org/10.33773/jum.679843

Abstract

References

  • M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, Math. Anal. Appl. 270 (2002), 181 - 188.
  • C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric space, Chaos, Soliton and Fractals, 29 (5) (2006), 1073 - 1078.
  • K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and System, 20 (1986), 87 - 96.
  • A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395 - 399.
  • A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997), 365 - 368.
  • G. Jungck, Commuting mappings and fixed points, Am. Math. Mon. 83 (1976),261 - 263.
  • O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326 - 334.
  • S. Manro, S. S. Bhatia and S. Kumar, Common fixed point theorems in fuzzy metric spaces, Annals of Fuzzy Mathematics and Informatics, 3(1) (2012), 151 - 158.
  • Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289 - 297.
  • Z. Mustafa, H. Aydi and E. Karapinar, On common fixed points G - metric spaces using (E.A.) property, Computer and mathematics with applications 64 (2012), 1944 - 1956.
  • R. Muthuraj, M. Sornavalli and M. Jeyaraman, Common coupled fixed point theorems in generalized intuitionistic fuzzy metric spaces, Notes On Intuitionistic Fuzzy sets, 23(1) (2017), 57 - 69.
  • J. H. Park, Intuitionistic fuzzy metric space, Chaos, Solitions & Fractals, 22 (2004), 1039 - 1046.
  • S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46) (1982), 149 - 153.
  • G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. 2 (2010), 673 - 678.
  • L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338 - 353.

NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES

Year 2021, , 51 - 61, 31.01.2021
https://doi.org/10.33773/jum.679843

Abstract

In this paper, we prove the existence and uniqueness of a common fixed point in symmetric generalized intuitionistic fuzzy metric spaces using property (E.A.) or CLRg property. We introduce the new notion for a pair of mappings (f, g) on a generalized intuitionistic fuzzy metric space called weakly commuting of type (Jf ) and R-weakly commuting of type (Jf ).

References

  • M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, Math. Anal. Appl. 270 (2002), 181 - 188.
  • C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric space, Chaos, Soliton and Fractals, 29 (5) (2006), 1073 - 1078.
  • K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and System, 20 (1986), 87 - 96.
  • A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395 - 399.
  • A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997), 365 - 368.
  • G. Jungck, Commuting mappings and fixed points, Am. Math. Mon. 83 (1976),261 - 263.
  • O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326 - 334.
  • S. Manro, S. S. Bhatia and S. Kumar, Common fixed point theorems in fuzzy metric spaces, Annals of Fuzzy Mathematics and Informatics, 3(1) (2012), 151 - 158.
  • Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289 - 297.
  • Z. Mustafa, H. Aydi and E. Karapinar, On common fixed points G - metric spaces using (E.A.) property, Computer and mathematics with applications 64 (2012), 1944 - 1956.
  • R. Muthuraj, M. Sornavalli and M. Jeyaraman, Common coupled fixed point theorems in generalized intuitionistic fuzzy metric spaces, Notes On Intuitionistic Fuzzy sets, 23(1) (2017), 57 - 69.
  • J. H. Park, Intuitionistic fuzzy metric space, Chaos, Solitions & Fractals, 22 (2004), 1039 - 1046.
  • S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46) (1982), 149 - 153.
  • G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. 2 (2010), 673 - 678.
  • L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338 - 353.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

M. Jeyaraman This is me

M. Suganthı

Publication Date January 31, 2021
Submission Date January 24, 2020
Acceptance Date February 18, 2021
Published in Issue Year 2021

Cite

APA Jeyaraman, M., & Suganthı, M. (2021). NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES. Journal of Universal Mathematics, 4(1), 51-61. https://doi.org/10.33773/jum.679843
AMA Jeyaraman M, Suganthı M. NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES. JUM. January 2021;4(1):51-61. doi:10.33773/jum.679843
Chicago Jeyaraman, M., and M. Suganthı. “NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES”. Journal of Universal Mathematics 4, no. 1 (January 2021): 51-61. https://doi.org/10.33773/jum.679843.
EndNote Jeyaraman M, Suganthı M (January 1, 2021) NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES. Journal of Universal Mathematics 4 1 51–61.
IEEE M. Jeyaraman and M. Suganthı, “NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES”, JUM, vol. 4, no. 1, pp. 51–61, 2021, doi: 10.33773/jum.679843.
ISNAD Jeyaraman, M. - Suganthı, M. “NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES”. Journal of Universal Mathematics 4/1 (January 2021), 51-61. https://doi.org/10.33773/jum.679843.
JAMA Jeyaraman M, Suganthı M. NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES. JUM. 2021;4:51–61.
MLA Jeyaraman, M. and M. Suganthı. “NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES”. Journal of Universal Mathematics, vol. 4, no. 1, 2021, pp. 51-61, doi:10.33773/jum.679843.
Vancouver Jeyaraman M, Suganthı M. NEW APPROACHES ON SYMMETRIC GENERALIZED INTUITIONISTIC FUZZY METRIC SPACES. JUM. 2021;4(1):51-6.