Research Article
BibTex RIS Cite

ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM

Year 2021, , 188 - 200, 31.07.2021
https://doi.org/10.33773/jum.958029

Abstract

Let $\omega _{i}$ be weight
functions on $%
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
$, (i=1,2,3,4). In this work, we define $CW_{\omega _{1},\omega _{2},\omega _{3},\omega
_{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ to be vector space of $\left( f,g\right) \in \left( L_{\omega
_{1}}^{p}\times L_{\omega _{2}}^{q}\right) \left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ such that the $\tau -$Wigner transforms $W_{\tau }\left(
f,.\right) $ and $W_{\tau }\left( .,g\right) $ belong to $L_{\omega
_{3}}^{r}\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
^{2}\right) $ and $L_{\omega _{4}}^{s}\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
^{2}\right) $ respectively for $1\leq p,q,r,s<\infty $, $\tau \in \left(
0,1\right) $. We endow this space with a sum norm and prove that $%
CW_{\omega _{1},\omega _{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ is a Banach space. We also show that $CW_{\omega _{1},\omega
_{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ becomes an essential Banach module over $\left( L_{\omega
_{1}}^{1}\times L_{\omega _{2}}^{1}\right) \left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $. We then consider approximate identities.

Supporting Institution

Giresun University

Project Number

FEN-BAP-C-150219-01

References

  • P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time- frequency representations based on the short- time Fourier transform, Oper Theory, 172, 235-249, (2007).
  • P. Boggiatto, G. De Donno, A. Oliaro, Time- frequency representations of Wigner type and pseudo- differential operators, Trans Amer Math Soc, 362, 4955-4981, (2010).
  • R.S. Doran, J. Wichmann, Approximate identity and factorization in Banach modules, Lecture Notes in Math. Springer-Verlag, 768 (1979).
  • M. Duman, Ö. Kulak, On Function Spaces with Fractional Wavelet Transform, Montes Taurus J. Pure Appl. Math. 3 (3), 122–134 (2021).
  • R.H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of weighted spaces, Mathematica Slovaca, 46(1), 71-82 (1996).
  • I.G. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc.Lon.Math.Soc., 19(3), 327-340 (1969).
  • K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston (2001).
  • Ö. Kulak, A.T. Gürkanlı, On Function Spaces with Wavelet Transform in L-omega-p-R, Hacettepe Journal of Mathematics and Statistics, 40(2), 163-177 (2011).
  • H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford (1968).
  • A. Sandıkçı, Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish Journal of Mathematics, 38, 728- 745 (2014).
  • A. Sandıkçı, Multilinear tau -wigner transform, J. Pseudo-Differ. Oper. Appl., 11, 1465-1487 (2020).
  • H.C. Wang, Homogeneous Banach algebras, New York: Marcel Dekker Inc. (1977).
Year 2021, , 188 - 200, 31.07.2021
https://doi.org/10.33773/jum.958029

Abstract

Project Number

FEN-BAP-C-150219-01

References

  • P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time- frequency representations based on the short- time Fourier transform, Oper Theory, 172, 235-249, (2007).
  • P. Boggiatto, G. De Donno, A. Oliaro, Time- frequency representations of Wigner type and pseudo- differential operators, Trans Amer Math Soc, 362, 4955-4981, (2010).
  • R.S. Doran, J. Wichmann, Approximate identity and factorization in Banach modules, Lecture Notes in Math. Springer-Verlag, 768 (1979).
  • M. Duman, Ö. Kulak, On Function Spaces with Fractional Wavelet Transform, Montes Taurus J. Pure Appl. Math. 3 (3), 122–134 (2021).
  • R.H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of weighted spaces, Mathematica Slovaca, 46(1), 71-82 (1996).
  • I.G. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc.Lon.Math.Soc., 19(3), 327-340 (1969).
  • K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston (2001).
  • Ö. Kulak, A.T. Gürkanlı, On Function Spaces with Wavelet Transform in L-omega-p-R, Hacettepe Journal of Mathematics and Statistics, 40(2), 163-177 (2011).
  • H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford (1968).
  • A. Sandıkçı, Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish Journal of Mathematics, 38, 728- 745 (2014).
  • A. Sandıkçı, Multilinear tau -wigner transform, J. Pseudo-Differ. Oper. Appl., 11, 1465-1487 (2020).
  • H.C. Wang, Homogeneous Banach algebras, New York: Marcel Dekker Inc. (1977).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Öznur Kulak 0000-0003-1433-3159

Project Number FEN-BAP-C-150219-01
Publication Date July 31, 2021
Submission Date June 26, 2021
Acceptance Date July 28, 2021
Published in Issue Year 2021

Cite

APA Kulak, Ö. (2021). ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. Journal of Universal Mathematics, 4(2), 188-200. https://doi.org/10.33773/jum.958029
AMA Kulak Ö. ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. JUM. July 2021;4(2):188-200. doi:10.33773/jum.958029
Chicago Kulak, Öznur. “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”. Journal of Universal Mathematics 4, no. 2 (July 2021): 188-200. https://doi.org/10.33773/jum.958029.
EndNote Kulak Ö (July 1, 2021) ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. Journal of Universal Mathematics 4 2 188–200.
IEEE Ö. Kulak, “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”, JUM, vol. 4, no. 2, pp. 188–200, 2021, doi: 10.33773/jum.958029.
ISNAD Kulak, Öznur. “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”. Journal of Universal Mathematics 4/2 (July 2021), 188-200. https://doi.org/10.33773/jum.958029.
JAMA Kulak Ö. ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. JUM. 2021;4:188–200.
MLA Kulak, Öznur. “ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 188-00, doi:10.33773/jum.958029.
Vancouver Kulak Ö. ON FUNCTION SPACES CHARACTERIZED BY THE WIGNER TRANSFORM. JUM. 2021;4(2):188-200.