Research Article
BibTex RIS Cite
Year 2021, , 166 - 171, 31.07.2021
https://doi.org/10.33773/jum.964785

Abstract

References

  • Chandrasekhara Rao. K, Gowri. R, On closure space, Varahmithir Journal of Mathematics Sciences, Vol.5, No.2, pp.375-378, (2005).
  • Boonpok. C, Generalized closed sets in Čech closed spaces. Acta Universitatis Apulensis. Mathematics-Informatics, Vol.22, pp.133-140, (2010).
  • Cech. E, Topological Spaces, Topological Papers of Eduard $\mathrm{\check{C}}$ech, Academia, Preque, pp.436-472, (1968).
  • Chvalina. J, On homeomorphic topologies and equivalent set-systems, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.12, pp.107-116, (1976).
  • Chvalina. J, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.17, pp.81-86, (1981).
  • Skula. L, Systeme von stetigen abbildungen, Czech. math. J., Vol. 17, No.92, 45-52, (1967).
  • Slapal. J, Closure operations for digital topology, Theoret. Comput. Sci., Vol.305, pp.457-471, (2003).
  • Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, Vol.19, pp.89-96, (1970).
  • Balachandran. K, Sundaram, P, Maki. H, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., Vol.12, pp.5-13, (1991).
  • Palaniappan. M, Chandrasekhara Rao. K, Regular Generalized Closed Sets, Kyungpook Mathematical Journal, Vol.33, No.2, pp.211-219, (1993).

NEW TYPES OF SETS IN CECH CLOSURE SPACES

Year 2021, , 166 - 171, 31.07.2021
https://doi.org/10.33773/jum.964785

Abstract

In this paper, we analysis and introduce the concepts of regular closed (open) sets and regular generalized closed (open) sets in Cech closure spaces. Also, we investigate the properties such as intersection, union, subspaces of regular generalized closed (open) sets of a Cech closure spaces. Moreover, by giving counter examples of one-sided theorems, it has been shown that the converse situation is not realized.

References

  • Chandrasekhara Rao. K, Gowri. R, On closure space, Varahmithir Journal of Mathematics Sciences, Vol.5, No.2, pp.375-378, (2005).
  • Boonpok. C, Generalized closed sets in Čech closed spaces. Acta Universitatis Apulensis. Mathematics-Informatics, Vol.22, pp.133-140, (2010).
  • Cech. E, Topological Spaces, Topological Papers of Eduard $\mathrm{\check{C}}$ech, Academia, Preque, pp.436-472, (1968).
  • Chvalina. J, On homeomorphic topologies and equivalent set-systems, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.12, pp.107-116, (1976).
  • Chvalina. J, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.17, pp.81-86, (1981).
  • Skula. L, Systeme von stetigen abbildungen, Czech. math. J., Vol. 17, No.92, 45-52, (1967).
  • Slapal. J, Closure operations for digital topology, Theoret. Comput. Sci., Vol.305, pp.457-471, (2003).
  • Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, Vol.19, pp.89-96, (1970).
  • Balachandran. K, Sundaram, P, Maki. H, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., Vol.12, pp.5-13, (1991).
  • Palaniappan. M, Chandrasekhara Rao. K, Regular Generalized Closed Sets, Kyungpook Mathematical Journal, Vol.33, No.2, pp.211-219, (1993).
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Naime Demirtaş 0000-0003-4137-4810

Orhan Dalkılıç 0000-0003-3875-1398

Publication Date July 31, 2021
Submission Date July 7, 2021
Acceptance Date July 26, 2021
Published in Issue Year 2021

Cite

APA Demirtaş, N., & Dalkılıç, O. (2021). NEW TYPES OF SETS IN CECH CLOSURE SPACES. Journal of Universal Mathematics, 4(2), 166-171. https://doi.org/10.33773/jum.964785
AMA Demirtaş N, Dalkılıç O. NEW TYPES OF SETS IN CECH CLOSURE SPACES. JUM. July 2021;4(2):166-171. doi:10.33773/jum.964785
Chicago Demirtaş, Naime, and Orhan Dalkılıç. “NEW TYPES OF SETS IN CECH CLOSURE SPACES”. Journal of Universal Mathematics 4, no. 2 (July 2021): 166-71. https://doi.org/10.33773/jum.964785.
EndNote Demirtaş N, Dalkılıç O (July 1, 2021) NEW TYPES OF SETS IN CECH CLOSURE SPACES. Journal of Universal Mathematics 4 2 166–171.
IEEE N. Demirtaş and O. Dalkılıç, “NEW TYPES OF SETS IN CECH CLOSURE SPACES”, JUM, vol. 4, no. 2, pp. 166–171, 2021, doi: 10.33773/jum.964785.
ISNAD Demirtaş, Naime - Dalkılıç, Orhan. “NEW TYPES OF SETS IN CECH CLOSURE SPACES”. Journal of Universal Mathematics 4/2 (July 2021), 166-171. https://doi.org/10.33773/jum.964785.
JAMA Demirtaş N, Dalkılıç O. NEW TYPES OF SETS IN CECH CLOSURE SPACES. JUM. 2021;4:166–171.
MLA Demirtaş, Naime and Orhan Dalkılıç. “NEW TYPES OF SETS IN CECH CLOSURE SPACES”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 166-71, doi:10.33773/jum.964785.
Vancouver Demirtaş N, Dalkılıç O. NEW TYPES OF SETS IN CECH CLOSURE SPACES. JUM. 2021;4(2):166-71.