Research Article
BibTex RIS Cite
Year 2021, , 102 - 108, 31.07.2021
https://doi.org/10.33773/jum.967903

Abstract

References

  • R. Alizade, E. Büyükaşık. Extensions of weakly supplemented modules, Math. Scand., Vol. 103, pp. 161-168 (2008).
  • E. Büyükaşık, E. Türkmen. Strongly radical supplemented modules. Ukr. Math. J., 63, No. 8, 1306-1313 (2011).
  • E. Kaynar, H. Çalışıcı, E. Türkmen. ss-supplemented modules. Communications Faculty of Science University of Ankara Series A1 Mathematics and statistics, Vol. 69, 1, pp 473-485 (2020). D. Keskin. On lifting modules, Comm. Algebra, Vol.28:7, 3427-3440 (2000).
  • T.Y. Lam. A first course in noncommutative rings, Springer, New York (1999).
  • C. Lomp. On semilocal modules and rings, Comm. Algebra, Vol. 27:4, 1921-1935 (1999).
  • B. Nişancı Türkmen, E. Türkmen. On a generalization of weakly supplemented modules. An. Stiin. Univ. Al. I. Cuza Din Iasi. Math (N.S.), Vol. 63(2), pp. 441-448 (2017).
  • D. W. Sharpe, P. Vamos. Injective modules. Cambridge University Press, Cambridge, (1972).
  • Y. Şahin, B. Nişancı Türkmen. Locally-artinian supplemented modules. 9th International Eurasian Conference On Mathematical Sciences and Applications Abstract Book,Skopje, North Macedonia, pp. 26 (2020).
  • D. Van Huynh, R. Wisbauer. Characterization of locally artinian modules. Journal of Algebra, Vol. 132, pp. 287-293 (1990).
  • R. Wisbauer. Foundations of modules and rings. Gordon and Breach, Springer-Verlag (1991).
  • D. X. Zhou, X. R. Zhang. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, Vol. 35, pp 1051-1062 (2011).
  • H. Zöschinger. Moduln, die in jeder erweiterung ein komplement haben. Math. Scand., Vol. 35, pp. 267-287 (1974).
  • H. Zöschinger. Komplementierte modulnüber dedekindringen. Journal of Algebra, Vol. 29, pp. 42-56 (1974).

WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES

Year 2021, , 102 - 108, 31.07.2021
https://doi.org/10.33773/jum.967903

Abstract

In this study, by using the concept of locally artinian supplemented modules, we have obtained that weakly locally artinian supplemented modules as a proper generalization of these modules in module theory. Our results generalize and extend various comparable results in the existing literature. We have proved that a notion of weakly locally artinian supplemented modules inherited by factor modules, finite sums and small covers. We have obtained that weakly locally artinian supplemented modules with small radical coincide with weakly (radical) supplemented modules which have locally artinian radical. Also, we have shown that if $N$ and $\frac{M}{N}$ are weakly locally artinian supplemented for some submodule $N\subseteq M$ which has a weak locally artinian supplement in $M$ then $M$ is weakly locally artinian supplemented.

References

  • R. Alizade, E. Büyükaşık. Extensions of weakly supplemented modules, Math. Scand., Vol. 103, pp. 161-168 (2008).
  • E. Büyükaşık, E. Türkmen. Strongly radical supplemented modules. Ukr. Math. J., 63, No. 8, 1306-1313 (2011).
  • E. Kaynar, H. Çalışıcı, E. Türkmen. ss-supplemented modules. Communications Faculty of Science University of Ankara Series A1 Mathematics and statistics, Vol. 69, 1, pp 473-485 (2020). D. Keskin. On lifting modules, Comm. Algebra, Vol.28:7, 3427-3440 (2000).
  • T.Y. Lam. A first course in noncommutative rings, Springer, New York (1999).
  • C. Lomp. On semilocal modules and rings, Comm. Algebra, Vol. 27:4, 1921-1935 (1999).
  • B. Nişancı Türkmen, E. Türkmen. On a generalization of weakly supplemented modules. An. Stiin. Univ. Al. I. Cuza Din Iasi. Math (N.S.), Vol. 63(2), pp. 441-448 (2017).
  • D. W. Sharpe, P. Vamos. Injective modules. Cambridge University Press, Cambridge, (1972).
  • Y. Şahin, B. Nişancı Türkmen. Locally-artinian supplemented modules. 9th International Eurasian Conference On Mathematical Sciences and Applications Abstract Book,Skopje, North Macedonia, pp. 26 (2020).
  • D. Van Huynh, R. Wisbauer. Characterization of locally artinian modules. Journal of Algebra, Vol. 132, pp. 287-293 (1990).
  • R. Wisbauer. Foundations of modules and rings. Gordon and Breach, Springer-Verlag (1991).
  • D. X. Zhou, X. R. Zhang. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, Vol. 35, pp 1051-1062 (2011).
  • H. Zöschinger. Moduln, die in jeder erweiterung ein komplement haben. Math. Scand., Vol. 35, pp. 267-287 (1974).
  • H. Zöschinger. Komplementierte modulnüber dedekindringen. Journal of Algebra, Vol. 29, pp. 42-56 (1974).
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Burcu Nişancı Türkmen 0000-0001-7900-0529

Publication Date July 31, 2021
Submission Date July 8, 2021
Acceptance Date July 29, 2021
Published in Issue Year 2021

Cite

APA Nişancı Türkmen, B. (2021). WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES. Journal of Universal Mathematics, 4(2), 102-108. https://doi.org/10.33773/jum.967903
AMA Nişancı Türkmen B. WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES. JUM. July 2021;4(2):102-108. doi:10.33773/jum.967903
Chicago Nişancı Türkmen, Burcu. “WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES”. Journal of Universal Mathematics 4, no. 2 (July 2021): 102-8. https://doi.org/10.33773/jum.967903.
EndNote Nişancı Türkmen B (July 1, 2021) WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES. Journal of Universal Mathematics 4 2 102–108.
IEEE B. Nişancı Türkmen, “WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES”, JUM, vol. 4, no. 2, pp. 102–108, 2021, doi: 10.33773/jum.967903.
ISNAD Nişancı Türkmen, Burcu. “WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES”. Journal of Universal Mathematics 4/2 (July 2021), 102-108. https://doi.org/10.33773/jum.967903.
JAMA Nişancı Türkmen B. WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES. JUM. 2021;4:102–108.
MLA Nişancı Türkmen, Burcu. “WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 102-8, doi:10.33773/jum.967903.
Vancouver Nişancı Türkmen B. WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES. JUM. 2021;4(2):102-8.