Research Article
BibTex RIS Cite

CONTROLLED FUZZY EVOLUTION EQUATIONS

Year 2018, Volume: 1 Issue: 2, 155 - 165, 31.07.2018

Abstract

This paper is concerned with controlled fuzzy nonlinear evolution equations of the form u'(t) = Au(t) + f(t, u(t), u(rho((t)) + B(t)c(t); t in [t_0; t_1] and u(t_0) = u_0. Where c(t) is a fuzzy control, the operator A generate a fuzzy semigroup. We use the fuzzy strongly continuous semigroups theory to prove the existence, uniqueness and some properties of mild solutions.

References

  • R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., (1965), 1-12.
  • A. El Allaoui, S. Melliani and L. S. Chadli, Fuzzy dynamical systems and Invariant attractor sets for fuzzy strongly continuous semigroups, Journal of Fuzzy Set Valued Analysis 2016 No.2 (2016) 148-155.
  • A. El Allaoui, S. Melliani, L. S. Chadli, Fuzzy alpha-semigroups of operators, General Letters in Mathematics Vol 2 (2) (2017) 42-49.
  • Bhaskar Dubey, Raju K. George, Controllability of Linear Time-invariant Dynamical Systems with Fuzzy Initial Condition, Proceedings of the World Congress on Engineering and Computer Science (2013), 23-25.
  • Bhaskar Dubey and Raju K. George, Estimation of controllable initial fuzzy states of linear time-invariant dynamical systems, Communications in Computer and Information Science, Springer, (2012), 316-324.
  • Y. Feng, L. Hua, On the quasi-controllability of continuous-time dynamic fuzzy control systems, Chaos, Solitons & Fractals (2006), 177-188.
  • C. G. Gal and S. G. Gal, Semigroups of Operators on Spaces of Fuzzy-Number-Valued Functions with Applications to Fuzzy Differential Equations, arXiv:1306.3928v1 (2013).
  • M. Hukuhara, Integration des applications measurables dont la valeur est un compact convexe, Funk. Ekvacioj (1967), 207-223.
  • O. Kaleva, Fuzzy Differentiel Equations, Fuzzy Sets and Systems. (1987), 24: 301{317.
  • Said Melliani, El Hassan Eljaoui and Lalla Saadia Chadli, Fuzzy Differential Equation With Nonlocal Conditions And Fuzzy semigroups, Advances in Difference Equations (2016).
  • S. Melliani, L. S. Chadli, A. El Allaoui, Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces. International Journal of Nonlinear Analy-sis and Applications, 8(1) (2017), 301-314.
  • S. Melliani, A. El Allaoui and L. S. Chadli, A general classof periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces, Advances in Difference Equations (2016): 290.
  • S. Melliani, A. El Allaoui and L. S. Chadli , Relation Between Fuzzy Semigroups and Fuzzy Dynamical Systems, Nonlinear Dynamics and Systems Theory, 17 (1) (2017) 60-69.
  • M. L. Puri, D. A. Ralescu. Fuzzy random variables, J. Math. Anal. Appl. (1986), 114: 409-422.
Year 2018, Volume: 1 Issue: 2, 155 - 165, 31.07.2018

Abstract

References

  • R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., (1965), 1-12.
  • A. El Allaoui, S. Melliani and L. S. Chadli, Fuzzy dynamical systems and Invariant attractor sets for fuzzy strongly continuous semigroups, Journal of Fuzzy Set Valued Analysis 2016 No.2 (2016) 148-155.
  • A. El Allaoui, S. Melliani, L. S. Chadli, Fuzzy alpha-semigroups of operators, General Letters in Mathematics Vol 2 (2) (2017) 42-49.
  • Bhaskar Dubey, Raju K. George, Controllability of Linear Time-invariant Dynamical Systems with Fuzzy Initial Condition, Proceedings of the World Congress on Engineering and Computer Science (2013), 23-25.
  • Bhaskar Dubey and Raju K. George, Estimation of controllable initial fuzzy states of linear time-invariant dynamical systems, Communications in Computer and Information Science, Springer, (2012), 316-324.
  • Y. Feng, L. Hua, On the quasi-controllability of continuous-time dynamic fuzzy control systems, Chaos, Solitons & Fractals (2006), 177-188.
  • C. G. Gal and S. G. Gal, Semigroups of Operators on Spaces of Fuzzy-Number-Valued Functions with Applications to Fuzzy Differential Equations, arXiv:1306.3928v1 (2013).
  • M. Hukuhara, Integration des applications measurables dont la valeur est un compact convexe, Funk. Ekvacioj (1967), 207-223.
  • O. Kaleva, Fuzzy Differentiel Equations, Fuzzy Sets and Systems. (1987), 24: 301{317.
  • Said Melliani, El Hassan Eljaoui and Lalla Saadia Chadli, Fuzzy Differential Equation With Nonlocal Conditions And Fuzzy semigroups, Advances in Difference Equations (2016).
  • S. Melliani, L. S. Chadli, A. El Allaoui, Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces. International Journal of Nonlinear Analy-sis and Applications, 8(1) (2017), 301-314.
  • S. Melliani, A. El Allaoui and L. S. Chadli, A general classof periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces, Advances in Difference Equations (2016): 290.
  • S. Melliani, A. El Allaoui and L. S. Chadli , Relation Between Fuzzy Semigroups and Fuzzy Dynamical Systems, Nonlinear Dynamics and Systems Theory, 17 (1) (2017) 60-69.
  • M. L. Puri, D. A. Ralescu. Fuzzy random variables, J. Math. Anal. Appl. (1986), 114: 409-422.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Said Melliani 0000-0002-5150-1185

Abdelati El Allaoui This is me

Lalla Saadia Chadli

Publication Date July 31, 2018
Submission Date May 15, 2018
Acceptance Date August 5, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Melliani, S., El Allaoui, A., & Chadli, L. S. (2018). CONTROLLED FUZZY EVOLUTION EQUATIONS. Journal of Universal Mathematics, 1(2), 155-165.
AMA Melliani S, El Allaoui A, Chadli LS. CONTROLLED FUZZY EVOLUTION EQUATIONS. JUM. July 2018;1(2):155-165.
Chicago Melliani, Said, Abdelati El Allaoui, and Lalla Saadia Chadli. “CONTROLLED FUZZY EVOLUTION EQUATIONS”. Journal of Universal Mathematics 1, no. 2 (July 2018): 155-65.
EndNote Melliani S, El Allaoui A, Chadli LS (July 1, 2018) CONTROLLED FUZZY EVOLUTION EQUATIONS. Journal of Universal Mathematics 1 2 155–165.
IEEE S. Melliani, A. El Allaoui, and L. S. Chadli, “CONTROLLED FUZZY EVOLUTION EQUATIONS”, JUM, vol. 1, no. 2, pp. 155–165, 2018.
ISNAD Melliani, Said et al. “CONTROLLED FUZZY EVOLUTION EQUATIONS”. Journal of Universal Mathematics 1/2 (July 2018), 155-165.
JAMA Melliani S, El Allaoui A, Chadli LS. CONTROLLED FUZZY EVOLUTION EQUATIONS. JUM. 2018;1:155–165.
MLA Melliani, Said et al. “CONTROLLED FUZZY EVOLUTION EQUATIONS”. Journal of Universal Mathematics, vol. 1, no. 2, 2018, pp. 155-6.
Vancouver Melliani S, El Allaoui A, Chadli LS. CONTROLLED FUZZY EVOLUTION EQUATIONS. JUM. 2018;1(2):155-6.