Research Article
BibTex RIS Cite

CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES

Year 2018, Volume: 1 Issue: 2, 116 - 129, 31.07.2018

Abstract

In this paper, we construct an integer-valued degree function in a suitable classes of mappings of monotone type, using a complementary system formed of Generalized Sobolev Spaces in which the variable exponent p in P(log)(Omega) satisfy 1 < p'-  < p'+ < + ifinity, where  Omega is in RN is open and bounded.
This kind of spaces are not refexives

References

  • Berkovits, J.: On the degree theory for nonlinear mappings of monotone type. -Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 58,1986.
  • Berkovits, J., and V. Mustonen: On topological degree for mappings of monotone type. Nonlinear Anal. 10,1986,1373-1383.
  • Berkovits, J., and V. Mustonen: Nonlinear mappings of monotone type I. Classification and degree theory. Preprint No 2/88, Mathematics, University of Oulu.
  • Brouwer, L. E. J: Uber Abbildung von Mannigfaltigkeiten. - Math. Ann. 71, 1912 ,97-115.
  • F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983) 139.
  • Browder, F E: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773 (1983).
  • Deimling, K: Nonlinar functional analysis. Springer, Berlin (1985).
  • L. Dingien, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
  • L. Fuhrer, Ein elementarer analytischer Beweis zur Eindeutigkeit des A bbildungsgrades im Rn, Math. Nachr. 54 (1972), 259-267.
  • J. P. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
  • O. Kovacik and J. Rakosnik: On spaces Lp(x) and W1;p(x), Czechoslovak Math. J. 41 (1991), 592-618.
  • Leray, J, Schauder, J: Topologie et equationes fonctionnelles. Ann. Sci. Ec. Norm. Super. 51, 45-78 (1934).
  • Landes, R., and V. Mustonen: Pseudo-monotne mappings in Orlicz-Sobolev spaces and nonlinear boundary value problems on unbounded domains. J. Math. Anal. 88,1982,25-36.
  • Narici, L., and E. Beckenstein: Topological vector spaces. -Marcel Dekker, Inc., New York and Basel, 1985.
  • Skrypnik, I V. : Nonlinear higher order elliptic equations. Naukova Dumka, Kiev (1973)(in Russian).
  • Skrypnik,IV: Methods for analysis of nonlinear elliptic bondary value problems. Amer. Math. Soc. Transl., Ser. II, vol. 139. AMS, Providence(1994).
  • H. Amann and S. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-5.
  • Zeidler, E: Nonlinear functional analysis and its applications I: Fixed-Point-Theorems.Springer, New York (1985).
Year 2018, Volume: 1 Issue: 2, 116 - 129, 31.07.2018

Abstract

References

  • Berkovits, J.: On the degree theory for nonlinear mappings of monotone type. -Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 58,1986.
  • Berkovits, J., and V. Mustonen: On topological degree for mappings of monotone type. Nonlinear Anal. 10,1986,1373-1383.
  • Berkovits, J., and V. Mustonen: Nonlinear mappings of monotone type I. Classification and degree theory. Preprint No 2/88, Mathematics, University of Oulu.
  • Brouwer, L. E. J: Uber Abbildung von Mannigfaltigkeiten. - Math. Ann. 71, 1912 ,97-115.
  • F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983) 139.
  • Browder, F E: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773 (1983).
  • Deimling, K: Nonlinar functional analysis. Springer, Berlin (1985).
  • L. Dingien, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
  • L. Fuhrer, Ein elementarer analytischer Beweis zur Eindeutigkeit des A bbildungsgrades im Rn, Math. Nachr. 54 (1972), 259-267.
  • J. P. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
  • O. Kovacik and J. Rakosnik: On spaces Lp(x) and W1;p(x), Czechoslovak Math. J. 41 (1991), 592-618.
  • Leray, J, Schauder, J: Topologie et equationes fonctionnelles. Ann. Sci. Ec. Norm. Super. 51, 45-78 (1934).
  • Landes, R., and V. Mustonen: Pseudo-monotne mappings in Orlicz-Sobolev spaces and nonlinear boundary value problems on unbounded domains. J. Math. Anal. 88,1982,25-36.
  • Narici, L., and E. Beckenstein: Topological vector spaces. -Marcel Dekker, Inc., New York and Basel, 1985.
  • Skrypnik, I V. : Nonlinear higher order elliptic equations. Naukova Dumka, Kiev (1973)(in Russian).
  • Skrypnik,IV: Methods for analysis of nonlinear elliptic bondary value problems. Amer. Math. Soc. Transl., Ser. II, vol. 139. AMS, Providence(1994).
  • H. Amann and S. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-5.
  • Zeidler, E: Nonlinear functional analysis and its applications I: Fixed-Point-Theorems.Springer, New York (1985).
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mustapha Ait Hammou

Elhoussine Azroul

Publication Date July 31, 2018
Submission Date May 15, 2018
Acceptance Date August 5, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Ait Hammou, M., & Azroul, E. (2018). CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. Journal of Universal Mathematics, 1(2), 116-129.
AMA Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. July 2018;1(2):116-129.
Chicago Ait Hammou, Mustapha, and Elhoussine Azroul. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics 1, no. 2 (July 2018): 116-29.
EndNote Ait Hammou M, Azroul E (July 1, 2018) CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. Journal of Universal Mathematics 1 2 116–129.
IEEE M. Ait Hammou and E. Azroul, “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”, JUM, vol. 1, no. 2, pp. 116–129, 2018.
ISNAD Ait Hammou, Mustapha - Azroul, Elhoussine. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics 1/2 (July 2018), 116-129.
JAMA Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. 2018;1:116–129.
MLA Ait Hammou, Mustapha and Elhoussine Azroul. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics, vol. 1, no. 2, 2018, pp. 116-29.
Vancouver Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. 2018;1(2):116-29.