Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 103 - 112, 31.01.2020
https://doi.org/10.33773/jum.620712

Abstract

References

  • 1 : S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 2 : S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 3 : E. K. Godunova and V. I. Levin,Inequalities for functions of a broad class that contains convex , monotone and some other forms of functions. (Russian.) Numerical mathematics and mathematical physics (Russian.), 138-142, 166, Moskov. Gos. Ped. Inst. Moscow, 1985.
  • 4 : S. K. Khattri, Three proofs of the inequality e<(1+(1/n))^{n+0.5}, Amer. Math. Monthly, 117(3), 273-277 (2010).
  • . 5 : A. Kilbas , H. M. Srivastava , J. J. Trujilo : Theory and applications of fractional differential equations, Elsevier B. V. ,Amsterdam, Neherlands, (2006).
  • 6 : M. A. Latif , Some inequalities for differentiable prequasiinvex functions with applications, Konuralp J. Math., 1(2), 17-29, 2013. 7: M. A. Latif and S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivates in absloute value are preinvex on the co-oordinates, Facta Universitasis (NIS) Ser. Math. Inform. 28(3), 257-270, (2013).

SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS

Year 2020, Volume: 3 Issue: 1, 103 - 112, 31.01.2020
https://doi.org/10.33773/jum.620712

Abstract

In the present paper, a new class of convex functions isintroduced which is called (fi,p,mu)-preinvex functions.With the help of this new class we prove some of Hermite-Hadamard type inequalities for (fi,p,mu)-preinvex functions.

References

  • 1 : S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 2 : S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 3 : E. K. Godunova and V. I. Levin,Inequalities for functions of a broad class that contains convex , monotone and some other forms of functions. (Russian.) Numerical mathematics and mathematical physics (Russian.), 138-142, 166, Moskov. Gos. Ped. Inst. Moscow, 1985.
  • 4 : S. K. Khattri, Three proofs of the inequality e<(1+(1/n))^{n+0.5}, Amer. Math. Monthly, 117(3), 273-277 (2010).
  • . 5 : A. Kilbas , H. M. Srivastava , J. J. Trujilo : Theory and applications of fractional differential equations, Elsevier B. V. ,Amsterdam, Neherlands, (2006).
  • 6 : M. A. Latif , Some inequalities for differentiable prequasiinvex functions with applications, Konuralp J. Math., 1(2), 17-29, 2013. 7: M. A. Latif and S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivates in absloute value are preinvex on the co-oordinates, Facta Universitasis (NIS) Ser. Math. Inform. 28(3), 257-270, (2013).
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Seda Kılınç 0000-0002-3258-6240

Hüseyin Yıldırım 0000-0001-8855-9260

Publication Date January 31, 2020
Submission Date September 16, 2019
Acceptance Date February 27, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Kılınç, S., & Yıldırım, H. (2020). SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS. Journal of Universal Mathematics, 3(1), 103-112. https://doi.org/10.33773/jum.620712
AMA Kılınç S, Yıldırım H. SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS. JUM. January 2020;3(1):103-112. doi:10.33773/jum.620712
Chicago Kılınç, Seda, and Hüseyin Yıldırım. “SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, P, µ)−PREINVEX FUNCTIONS”. Journal of Universal Mathematics 3, no. 1 (January 2020): 103-12. https://doi.org/10.33773/jum.620712.
EndNote Kılınç S, Yıldırım H (January 1, 2020) SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS. Journal of Universal Mathematics 3 1 103–112.
IEEE S. Kılınç and H. Yıldırım, “SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS”, JUM, vol. 3, no. 1, pp. 103–112, 2020, doi: 10.33773/jum.620712.
ISNAD Kılınç, Seda - Yıldırım, Hüseyin. “SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, P, µ)−PREINVEX FUNCTIONS”. Journal of Universal Mathematics 3/1 (January 2020), 103-112. https://doi.org/10.33773/jum.620712.
JAMA Kılınç S, Yıldırım H. SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS. JUM. 2020;3:103–112.
MLA Kılınç, Seda and Hüseyin Yıldırım. “SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, P, µ)−PREINVEX FUNCTIONS”. Journal of Universal Mathematics, vol. 3, no. 1, 2020, pp. 103-12, doi:10.33773/jum.620712.
Vancouver Kılınç S, Yıldırım H. SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS. JUM. 2020;3(1):103-12.