Research Article
PDF Zotero Mendeley EndNote BibTex Cite

SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS

Year 2020, Volume 3, Issue 1, 103 - 112, 31.01.2020
https://doi.org/10.33773/jum.620712

Abstract

In the present paper, a new class of convex functions isintroduced which is called (fi,p,mu)-preinvex functions.With the help of this new class we prove some of Hermite-Hadamard type inequalities for (fi,p,mu)-preinvex functions.

References

  • 1 : S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 2 : S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 3 : E. K. Godunova and V. I. Levin,Inequalities for functions of a broad class that contains convex , monotone and some other forms of functions. (Russian.) Numerical mathematics and mathematical physics (Russian.), 138-142, 166, Moskov. Gos. Ped. Inst. Moscow, 1985.
  • 4 : S. K. Khattri, Three proofs of the inequality e<(1+(1/n))^{n+0.5}, Amer. Math. Monthly, 117(3), 273-277 (2010).
  • . 5 : A. Kilbas , H. M. Srivastava , J. J. Trujilo : Theory and applications of fractional differential equations, Elsevier B. V. ,Amsterdam, Neherlands, (2006).
  • 6 : M. A. Latif , Some inequalities for differentiable prequasiinvex functions with applications, Konuralp J. Math., 1(2), 17-29, 2013. 7: M. A. Latif and S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivates in absloute value are preinvex on the co-oordinates, Facta Universitasis (NIS) Ser. Math. Inform. 28(3), 257-270, (2013).

Year 2020, Volume 3, Issue 1, 103 - 112, 31.01.2020
https://doi.org/10.33773/jum.620712

Abstract

References

  • 1 : S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 2 : S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 3 : E. K. Godunova and V. I. Levin,Inequalities for functions of a broad class that contains convex , monotone and some other forms of functions. (Russian.) Numerical mathematics and mathematical physics (Russian.), 138-142, 166, Moskov. Gos. Ped. Inst. Moscow, 1985.
  • 4 : S. K. Khattri, Three proofs of the inequality e<(1+(1/n))^{n+0.5}, Amer. Math. Monthly, 117(3), 273-277 (2010).
  • . 5 : A. Kilbas , H. M. Srivastava , J. J. Trujilo : Theory and applications of fractional differential equations, Elsevier B. V. ,Amsterdam, Neherlands, (2006).
  • 6 : M. A. Latif , Some inequalities for differentiable prequasiinvex functions with applications, Konuralp J. Math., 1(2), 17-29, 2013. 7: M. A. Latif and S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivates in absloute value are preinvex on the co-oordinates, Facta Universitasis (NIS) Ser. Math. Inform. 28(3), 257-270, (2013).

Details

Primary Language English
Subjects Mathematics
Journal Section Research Article
Authors

Seda KILINÇ (Primary Author)
kahramanmaraş Sütçü İmam Üniversitesi
0000-0002-3258-6240
Türkiye


Hüseyin YILDIRIM
0000-0001-8855-9260

Publication Date January 31, 2020
Application Date September 16, 2019
Acceptance Date February 27, 2020
Published in Issue Year 2020, Volume 3, Issue 1

Cite

Bibtex @research article { jum620712, journal = {Journal of Universal Mathematics}, issn = {2618-5660}, eissn = {2618-5660}, address = {editorinchief@junimath.com}, publisher = {Gökhan ÇUVALCIOĞLU}, year = {2020}, volume = {3}, pages = {103 - 112}, doi = {10.33773/jum.620712}, title = {SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS}, key = {cite}, author = {Kılınç, Seda and Yıldırım, Hüseyin} }
APA Kılınç, S. & Yıldırım, H. (2020). SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS . Journal of Universal Mathematics , 3 (1) , 103-112 . DOI: 10.33773/jum.620712
MLA Kılınç, S. , Yıldırım, H. "SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS" . Journal of Universal Mathematics 3 (2020 ): 103-112 <https://dergipark.org.tr/en/pub/jum/issue/52380/620712>
Chicago Kılınç, S. , Yıldırım, H. "SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS". Journal of Universal Mathematics 3 (2020 ): 103-112
RIS TY - JOUR T1 - SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS AU - Seda Kılınç , Hüseyin Yıldırım Y1 - 2020 PY - 2020 N1 - doi: 10.33773/jum.620712 DO - 10.33773/jum.620712 T2 - Journal of Universal Mathematics JF - Journal JO - JOR SP - 103 EP - 112 VL - 3 IS - 1 SN - 2618-5660-2618-5660 M3 - doi: 10.33773/jum.620712 UR - https://doi.org/10.33773/jum.620712 Y2 - 2020 ER -
EndNote %0 Journal of Universal Mathematics SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS %A Seda Kılınç , Hüseyin Yıldırım %T SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS %D 2020 %J Journal of Universal Mathematics %P 2618-5660-2618-5660 %V 3 %N 1 %R doi: 10.33773/jum.620712 %U 10.33773/jum.620712
ISNAD Kılınç, Seda , Yıldırım, Hüseyin . "SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS". Journal of Universal Mathematics 3 / 1 (January 2020): 103-112 . https://doi.org/10.33773/jum.620712
AMA Kılınç S. , Yıldırım H. SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS. JUM. 2020; 3(1): 103-112.
Vancouver Kılınç S. , Yıldırım H. SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS. Journal of Universal Mathematics. 2020; 3(1): 103-112.
IEEE S. Kılınç and H. Yıldırım , "SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS", Journal of Universal Mathematics, vol. 3, no. 1, pp. 103-112, Jan. 2020, doi:10.33773/jum.620712