Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 1, 81 - 86, 31.01.2021
https://doi.org/10.33773/jum.746512

Abstract

References

  • [1] Kim S. H., Monk B., Neggers J., On pseudo fuzzy linear mappings, Information Sciences, 177, 897-905, (2007).
  • [2] Katsaras A. K., Liu D.B., Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, Journal of Mathematical Analysis and Applications, 58, 135-146, (1977).
  • [3] Muganda G. C., Fuzzy Linear and Axne Spaces, Fuzzy Sets and Systems, 38, 365-373, (1990).
  • [4] Demirci M., Recasens J., Fuzzy Groups, Fuzzy Functions and Fuzzy Equivalence Relations, Fuzzy Sets and Systems, 144, 441-458,(2004).
  • [5] Demirci M., Fuzzy Functions and Their Applications, Journal of Mathematical Analysis and Applications, 252, 495-517, (2000).
  • [6] Demirci M., Fundamentals of M-vague Algebra and M-vague Arithmetic Operations, Int. J. Uncertainly Fuzziness Knowledge-Based Systems, 10, 1, 25-75, (2002).
  • [7] Sostak A. P., Fuzzy Functions and an Extension of the Category L-Top of Chang-Goguen L-Topological Spaces, Proceedings of the Ninth Prague Symposium, pp. 271-294, Topological Atlas, Toronto, 2002.
  • [8] L. A. Zadeh , Fuzzy sets, Information and Control, 8,338-353, (1965).
  • [9] Abdukhalikov, K. S., The Dual of Fuzzy Subspace, Fuzzy Sets and Systems, 82, 375-381, (1996).
  • [10] Klement E.P., Mesiar R., Pap E., Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties, Fuzzy Sets and Systems, 145, 411-438, (2004).
  • [11] Klement E.P., Mesiar R., Pap E., Triangular Norms. Position Paper II:General Contructions and Parameterize Families, Fuzzy Sets and Systems, 145, 411-438, (2004).
  • [12] Klement E.P., Mesiar R., Pap E., Triangular Norms. Position Paper III: Continuous t-norms, Fuzzy Sets and Systems, 145, 439-454, (2004).
  • [13] F. Karacal, D. Khadjiev, -Distributive and infinitely -distributive t-norms on complete lattice, Fuzzy Sets and Systems, 151, 341-352, (2005).
  • [14] U. Deniz, Diifferent Approximation to Fuzzy Ring Homomorphisms, Sakarya University Journal of Science, 6,1163-1172,(2019).

FUZZY LINEAR MAPPINGS

Year 2021, Volume: 4 Issue: 1, 81 - 86, 31.01.2021
https://doi.org/10.33773/jum.746512

Abstract

In this paper we study fuzzy linear mappings. In literature the
fuzzy linear mapping definition was given with classic functions. But we give
the definition of fuzzy linear mapping with using the definition of fuzzy function
that Demirci was given before. With this definition, we give some definition
and theorems that similar to classic algebra about linear mappings and prove
them.

References

  • [1] Kim S. H., Monk B., Neggers J., On pseudo fuzzy linear mappings, Information Sciences, 177, 897-905, (2007).
  • [2] Katsaras A. K., Liu D.B., Fuzzy Vector Spaces and Fuzzy Topological Vector Spaces, Journal of Mathematical Analysis and Applications, 58, 135-146, (1977).
  • [3] Muganda G. C., Fuzzy Linear and Axne Spaces, Fuzzy Sets and Systems, 38, 365-373, (1990).
  • [4] Demirci M., Recasens J., Fuzzy Groups, Fuzzy Functions and Fuzzy Equivalence Relations, Fuzzy Sets and Systems, 144, 441-458,(2004).
  • [5] Demirci M., Fuzzy Functions and Their Applications, Journal of Mathematical Analysis and Applications, 252, 495-517, (2000).
  • [6] Demirci M., Fundamentals of M-vague Algebra and M-vague Arithmetic Operations, Int. J. Uncertainly Fuzziness Knowledge-Based Systems, 10, 1, 25-75, (2002).
  • [7] Sostak A. P., Fuzzy Functions and an Extension of the Category L-Top of Chang-Goguen L-Topological Spaces, Proceedings of the Ninth Prague Symposium, pp. 271-294, Topological Atlas, Toronto, 2002.
  • [8] L. A. Zadeh , Fuzzy sets, Information and Control, 8,338-353, (1965).
  • [9] Abdukhalikov, K. S., The Dual of Fuzzy Subspace, Fuzzy Sets and Systems, 82, 375-381, (1996).
  • [10] Klement E.P., Mesiar R., Pap E., Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties, Fuzzy Sets and Systems, 145, 411-438, (2004).
  • [11] Klement E.P., Mesiar R., Pap E., Triangular Norms. Position Paper II:General Contructions and Parameterize Families, Fuzzy Sets and Systems, 145, 411-438, (2004).
  • [12] Klement E.P., Mesiar R., Pap E., Triangular Norms. Position Paper III: Continuous t-norms, Fuzzy Sets and Systems, 145, 439-454, (2004).
  • [13] F. Karacal, D. Khadjiev, -Distributive and infinitely -distributive t-norms on complete lattice, Fuzzy Sets and Systems, 151, 341-352, (2005).
  • [14] U. Deniz, Diifferent Approximation to Fuzzy Ring Homomorphisms, Sakarya University Journal of Science, 6,1163-1172,(2019).
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ümit Deniz 0000-0002-9248-2769

Publication Date January 31, 2021
Submission Date June 1, 2020
Acceptance Date February 21, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Deniz, Ü. (2021). FUZZY LINEAR MAPPINGS. Journal of Universal Mathematics, 4(1), 81-86. https://doi.org/10.33773/jum.746512
AMA Deniz Ü. FUZZY LINEAR MAPPINGS. JUM. January 2021;4(1):81-86. doi:10.33773/jum.746512
Chicago Deniz, Ümit. “FUZZY LINEAR MAPPINGS”. Journal of Universal Mathematics 4, no. 1 (January 2021): 81-86. https://doi.org/10.33773/jum.746512.
EndNote Deniz Ü (January 1, 2021) FUZZY LINEAR MAPPINGS. Journal of Universal Mathematics 4 1 81–86.
IEEE Ü. Deniz, “FUZZY LINEAR MAPPINGS”, JUM, vol. 4, no. 1, pp. 81–86, 2021, doi: 10.33773/jum.746512.
ISNAD Deniz, Ümit. “FUZZY LINEAR MAPPINGS”. Journal of Universal Mathematics 4/1 (January 2021), 81-86. https://doi.org/10.33773/jum.746512.
JAMA Deniz Ü. FUZZY LINEAR MAPPINGS. JUM. 2021;4:81–86.
MLA Deniz, Ümit. “FUZZY LINEAR MAPPINGS”. Journal of Universal Mathematics, vol. 4, no. 1, 2021, pp. 81-86, doi:10.33773/jum.746512.
Vancouver Deniz Ü. FUZZY LINEAR MAPPINGS. JUM. 2021;4(1):81-6.