Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 1, 34 - 41, 31.01.2021
https://doi.org/10.33773/jum.823084

Abstract

References

  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, A-Statistical Supremum-Infimum and A-Statistical Convergence, Azerbaijan Journal of Mathematics, Vol.4, No.2, pp.43-57, (2014).
  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, Ideal Limit Superior-Inferior, Gazi University Journal of Science, Vol.30, No.1, pp.401-411, (2017).
  • Alt\i nok. M, Porosity Supremum-Infimum and Porosity Convergence, Konuralp Journal of Mathematics, Vol.6, No.1, pp.163-170, (2018).
  • Fast. H, Sur la convergence statistique., Colloq. Math, Vol.2, pp.241-244, (1951).
  • Fridy. J. A, On statistical convergence, Analysis, Vol.5, pp.301-313, (1985).
  • K\"u\c{c}\"ukaslan. M, Alt\i nok. M, Statistical supremum infimum and statistical convergence, Aligarh Bulletin of Mathematics, Vol.32, pp.1-16, (2013).
  • Milan. P, Density and related topics, Mathematics Institute Slovak Academic of Sciences (2017).
  • Schoenberg. I. J, The integrability of certain functions and related summability methods, matrix characterization of statistical convergence, Amer.Math., Vol.66, pp.361-375, (1959).
  • Steinhaus. H, Sur la convergence ordinaire at la convergence asymptotique, Colloq. Math., Vol.2, No.1, pp.73-74, (1951).
  • Zygmund. A, Trigonometric series, 2nd., Ed. Vol. II, Cambridge Univ. press, London and New York (1979).

"lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE

Year 2021, Volume: 4 Issue: 1, 34 - 41, 31.01.2021
https://doi.org/10.33773/jum.823084

Abstract

Convergence of real valued sequences especially statistical convergence is very popular subject in Mathematical Analysis. Also, it has got a lot of characterizations in literature. In this paper, we are going to define $\lambda$-statistical supremum and $\lambda$-statistical infimum for real valued sequence $x=(x_n)$. After giving some basic properties of these new notations, then we are going to find a necessary and sufficient condition for to existence of λ-statistical convergence of the sequence $x=(x_n)$.

References

  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, A-Statistical Supremum-Infimum and A-Statistical Convergence, Azerbaijan Journal of Mathematics, Vol.4, No.2, pp.43-57, (2014).
  • Alt\i nok. M, K\"u\c{c}\"ukaslan. M, Ideal Limit Superior-Inferior, Gazi University Journal of Science, Vol.30, No.1, pp.401-411, (2017).
  • Alt\i nok. M, Porosity Supremum-Infimum and Porosity Convergence, Konuralp Journal of Mathematics, Vol.6, No.1, pp.163-170, (2018).
  • Fast. H, Sur la convergence statistique., Colloq. Math, Vol.2, pp.241-244, (1951).
  • Fridy. J. A, On statistical convergence, Analysis, Vol.5, pp.301-313, (1985).
  • K\"u\c{c}\"ukaslan. M, Alt\i nok. M, Statistical supremum infimum and statistical convergence, Aligarh Bulletin of Mathematics, Vol.32, pp.1-16, (2013).
  • Milan. P, Density and related topics, Mathematics Institute Slovak Academic of Sciences (2017).
  • Schoenberg. I. J, The integrability of certain functions and related summability methods, matrix characterization of statistical convergence, Amer.Math., Vol.66, pp.361-375, (1959).
  • Steinhaus. H, Sur la convergence ordinaire at la convergence asymptotique, Colloq. Math., Vol.2, No.1, pp.73-74, (1951).
  • Zygmund. A, Trigonometric series, 2nd., Ed. Vol. II, Cambridge Univ. press, London and New York (1979).
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Maya Altınok

Umutcan Kaya 0000-0002-0419-6106

Mehmet Küçükaslan

Publication Date January 31, 2021
Submission Date November 8, 2020
Acceptance Date February 18, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Altınok, M., Kaya, U., & Küçükaslan, M. (2021). "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. Journal of Universal Mathematics, 4(1), 34-41. https://doi.org/10.33773/jum.823084
AMA Altınok M, Kaya U, Küçükaslan M. "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. JUM. January 2021;4(1):34-41. doi:10.33773/jum.823084
Chicago Altınok, Maya, Umutcan Kaya, and Mehmet Küçükaslan. “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”. Journal of Universal Mathematics 4, no. 1 (January 2021): 34-41. https://doi.org/10.33773/jum.823084.
EndNote Altınok M, Kaya U, Küçükaslan M (January 1, 2021) "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. Journal of Universal Mathematics 4 1 34–41.
IEEE M. Altınok, U. Kaya, and M. Küçükaslan, “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”, JUM, vol. 4, no. 1, pp. 34–41, 2021, doi: 10.33773/jum.823084.
ISNAD Altınok, Maya et al. “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”. Journal of Universal Mathematics 4/1 (January 2021), 34-41. https://doi.org/10.33773/jum.823084.
JAMA Altınok M, Kaya U, Küçükaslan M. "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. JUM. 2021;4:34–41.
MLA Altınok, Maya et al. “"lambda" - STATISTICAL SUPREMUM - INFIMUM AND ‘lambda’ - STATISTICAL CONVERGENCE”. Journal of Universal Mathematics, vol. 4, no. 1, 2021, pp. 34-41, doi:10.33773/jum.823084.
Vancouver Altınok M, Kaya U, Küçükaslan M. "lambda" - STATISTICAL SUPREMUM - INFIMUM AND "lambda" - STATISTICAL CONVERGENCE. JUM. 2021;4(1):34-41.