Research Article
BibTex RIS Cite

TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE

Year 2022, Volume: 5 Issue: 2, 139 - 148, 31.07.2022
https://doi.org/10.33773/jum.1098406

Abstract

In this work, we give parametrizations of telescopic numerical semigroups with multiplicity ten and embedding dimension three.
We also express some of its invariants in terms of generators of these semigroups such as the Frobenius number, genus and Sylvester number.

References

  • V. Barucci, D. Dobbs and M. Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Vol. 598, Memoirs of the American Mathematical Society, Providence, RI, (1997).
  • A. Brauer, On a problem of partitions. Amer. J. Math., 64, (1942), 299-312.
  • F. Curtis, On Formulas fort he Frobenius number of a numerical semigroup. Math Scand., 67, (1990), 190-192.
  • D.E. Dobbs and G.L.Matthews, On Comparing two chains of numerical semigroups and detecting Arf semigroups. Semigroups Forum, 63, (2001), 237-246.
  • R. Fr¨oberg, C. Gottlieb and R. H¨aggkvist, On numerical semigroups. Semigroup Forum, 35, (1987), 63–83.
  • J. Herzog, Generators and relations of abelian semigroup and semigroups rings. Manuscripta Math., 3, (1970), 175-193.
  • C. Hollings, A History of the Algebraic Theory of Semigroups, Vol. 41, American Mathematical Society Providence, Rhode Island, pp. 16-17 (2014).
  • S. ˙Ilhan, On a class of telescopic numerical semigroups. Int. J. Contemporary Math. Sci., 1(2), (2006), 81-83.
  • S. ˙Ilhan, Some results in a class of telescopic numerical semigroups. Al-Qadisiyah Journal of Pure Science, 25(4), (2020), 40-45.
  • S.M. Johnson, A linear Diophantine problem, Canad. J. Math., 12, (1960), 390-398.
  • C. Kirfeland and R. Pellikaan, The minimum distance of codes in an array coming telescopic semigroups. Special issue on algebraic geometry codes, IEEE Trans. Inform. Theory, 41, (1995), 1720-1732.
  • E. Kunz, The value semigroup of an one dimensional Gorenstein ring. Proc. Amer. Math.Soc., 25, (1970), 748-751.
  • J.C. Rosales and P.A. Garcia-S´anchez, Numerical semigroups, Vol. 181, Springer, New York, (2009).
  • J.C. Rosales and P.A. Garcia-S´anchez, On free affine semigroups. Semigroup Forum, 58(3), (1999), 367–385.
  • M. S¨uer and S. ˙Ilhan, All Telescopic Numerical Semigroups With Multiplicity Four and Six. Journal of Science and Technology, Erzincan Universty, 12(1), (2019), 457-462.
  • M. S¨uer and ˙Ilhan, On triply generated telescopic semigroups with multiplicity 8 and 9. Comptes rendus de l’Academie bulgare des Sciences, 72(3), (2020), 315-319.
  • J.J. Sylvester, Problem 7382, in W. J. C. Miller, ed., Mathematical Questions, with their Solutions. Educational Times, 41, (1884), 21.
  • K. Watanabe, Some examples of one dimensional Gorenstein domains. Nagoya Math. J., 49, (1973), 101–109.
Year 2022, Volume: 5 Issue: 2, 139 - 148, 31.07.2022
https://doi.org/10.33773/jum.1098406

Abstract

References

  • V. Barucci, D. Dobbs and M. Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Vol. 598, Memoirs of the American Mathematical Society, Providence, RI, (1997).
  • A. Brauer, On a problem of partitions. Amer. J. Math., 64, (1942), 299-312.
  • F. Curtis, On Formulas fort he Frobenius number of a numerical semigroup. Math Scand., 67, (1990), 190-192.
  • D.E. Dobbs and G.L.Matthews, On Comparing two chains of numerical semigroups and detecting Arf semigroups. Semigroups Forum, 63, (2001), 237-246.
  • R. Fr¨oberg, C. Gottlieb and R. H¨aggkvist, On numerical semigroups. Semigroup Forum, 35, (1987), 63–83.
  • J. Herzog, Generators and relations of abelian semigroup and semigroups rings. Manuscripta Math., 3, (1970), 175-193.
  • C. Hollings, A History of the Algebraic Theory of Semigroups, Vol. 41, American Mathematical Society Providence, Rhode Island, pp. 16-17 (2014).
  • S. ˙Ilhan, On a class of telescopic numerical semigroups. Int. J. Contemporary Math. Sci., 1(2), (2006), 81-83.
  • S. ˙Ilhan, Some results in a class of telescopic numerical semigroups. Al-Qadisiyah Journal of Pure Science, 25(4), (2020), 40-45.
  • S.M. Johnson, A linear Diophantine problem, Canad. J. Math., 12, (1960), 390-398.
  • C. Kirfeland and R. Pellikaan, The minimum distance of codes in an array coming telescopic semigroups. Special issue on algebraic geometry codes, IEEE Trans. Inform. Theory, 41, (1995), 1720-1732.
  • E. Kunz, The value semigroup of an one dimensional Gorenstein ring. Proc. Amer. Math.Soc., 25, (1970), 748-751.
  • J.C. Rosales and P.A. Garcia-S´anchez, Numerical semigroups, Vol. 181, Springer, New York, (2009).
  • J.C. Rosales and P.A. Garcia-S´anchez, On free affine semigroups. Semigroup Forum, 58(3), (1999), 367–385.
  • M. S¨uer and S. ˙Ilhan, All Telescopic Numerical Semigroups With Multiplicity Four and Six. Journal of Science and Technology, Erzincan Universty, 12(1), (2019), 457-462.
  • M. S¨uer and ˙Ilhan, On triply generated telescopic semigroups with multiplicity 8 and 9. Comptes rendus de l’Academie bulgare des Sciences, 72(3), (2020), 315-319.
  • J.J. Sylvester, Problem 7382, in W. J. C. Miller, ed., Mathematical Questions, with their Solutions. Educational Times, 41, (1884), 21.
  • K. Watanabe, Some examples of one dimensional Gorenstein domains. Nagoya Math. J., 49, (1973), 101–109.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Meral Süer 0000-0002-5512-4305

Sedat İlhan 0000-0002-6608-8848

Publication Date July 31, 2022
Submission Date April 4, 2022
Acceptance Date July 19, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Süer, M., & İlhan, S. (2022). TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE. Journal of Universal Mathematics, 5(2), 139-148. https://doi.org/10.33773/jum.1098406
AMA Süer M, İlhan S. TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE. JUM. July 2022;5(2):139-148. doi:10.33773/jum.1098406
Chicago Süer, Meral, and Sedat İlhan. “TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE”. Journal of Universal Mathematics 5, no. 2 (July 2022): 139-48. https://doi.org/10.33773/jum.1098406.
EndNote Süer M, İlhan S (July 1, 2022) TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE. Journal of Universal Mathematics 5 2 139–148.
IEEE M. Süer and S. İlhan, “TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE”, JUM, vol. 5, no. 2, pp. 139–148, 2022, doi: 10.33773/jum.1098406.
ISNAD Süer, Meral - İlhan, Sedat. “TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE”. Journal of Universal Mathematics 5/2 (July 2022), 139-148. https://doi.org/10.33773/jum.1098406.
JAMA Süer M, İlhan S. TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE. JUM. 2022;5:139–148.
MLA Süer, Meral and Sedat İlhan. “TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE”. Journal of Universal Mathematics, vol. 5, no. 2, 2022, pp. 139-48, doi:10.33773/jum.1098406.
Vancouver Süer M, İlhan S. TELESCOPIC NUMERICAL SEMIGROUPS WITH MULTIPLICITY TEN AND EMBEDDING DIMENSION THREE. JUM. 2022;5(2):139-48.