Research Article
BibTex RIS Cite

A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY

Year 2023, Volume: 6 Issue: 1, 105 - 113, 31.01.2023
https://doi.org/10.33773/jum.1139872

Abstract

Game theory is a mathematical approach to analyze the state of competition between players. The foundations of this theory go back about 170 years, and the main development of the subject is based on the last 55 years. In this study, the effect of game theory on political elections and political behaviors has been examined. The Nash equilibrium is investigated by creating a mathematical model of the gains and losses that two political parties obtain in the elections according to the coalition formation status of two political parties by using the Prisoners' Dilemma game model in cooperative and non cooperative games.

References

  • [1] Shubik, M., Game theory and political science, Cowles Foundation Discussion Papers, 584, (1973).
  • [2] Çam, E., Oyun teorisinin mahiyeti ve oyunlar, İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 29, 1-4, (2012).
  • [3] Kontacı, E., Siyasî istikrar temelli koalisyon eleştirileri: Anayasa hukuku açısından ampirik bir analiz, Türkiye Barolar Birliği Dergisi, (2016).
  • [4] Chinchuluun, A., Pardalos, P., Migdalas, A., & Pitsoulis, L., Pareto Optimality, Game Theory And Equilibria, (2008).
  • [5] Roozendaal, P., Centre parties and coalition cabinet formations: a game theoretic approach, European Journal of Political Research, 18, 3, 325-348, (1990).
  • [6] Curiel, I., Cooperative combinatorial games, in Chinchuluun A., Pardalos P.M., Migdalas A., Pitsoulis L., Pareto Optimality, Game Theory And Equilibria, Springer Optimization and Its Applications, 17, Springer, New York, (2008).
  • [7] Bhuiyan, B. A., An Overview of game theory and some applications, Philosophy and Progress, 111–128, (2018).
  • [8] DU, J., XU, X., LI, H., ZHOU, X., & HAN, R., Playing prisoner’s dilemma with quantum rules, Fluctuation and Noise Letters, 02(04), R189–R203, (2002).
  • [9] Vives, X., Duopoly information equilibrium: Cournot and bertrand, Journal of Economic Theory, 34(1), 71–94, (1984).
  • [10] Karabacak, H., Herkes için oyun teorisi: oyunlar, kavramlar, stratejileri, Seçkin Yayıncılık, (2016).
  • [11] Shapiro, C., Chapter 6 Theories of oligopoly behavior, Handbook of Industrial Organization, Volume 1, 329–414, (1989).
  • [12] Özdamar, Ö., Oyun kuramının uluslararası ilişkiler yazınına katkıları, Uluslararası İlişkiler, 15, 33-66, (2007).
  • [13] Güner, S., Oyun kuramı ve uluslararası politika, METU Studies in Development, 163-180, (2003).
  • [14] Weese, E., Political mergers as coalition formation, Working Papers 997, Economic Growth Center, Yale University, (2011)
Year 2023, Volume: 6 Issue: 1, 105 - 113, 31.01.2023
https://doi.org/10.33773/jum.1139872

Abstract

References

  • [1] Shubik, M., Game theory and political science, Cowles Foundation Discussion Papers, 584, (1973).
  • [2] Çam, E., Oyun teorisinin mahiyeti ve oyunlar, İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 29, 1-4, (2012).
  • [3] Kontacı, E., Siyasî istikrar temelli koalisyon eleştirileri: Anayasa hukuku açısından ampirik bir analiz, Türkiye Barolar Birliği Dergisi, (2016).
  • [4] Chinchuluun, A., Pardalos, P., Migdalas, A., & Pitsoulis, L., Pareto Optimality, Game Theory And Equilibria, (2008).
  • [5] Roozendaal, P., Centre parties and coalition cabinet formations: a game theoretic approach, European Journal of Political Research, 18, 3, 325-348, (1990).
  • [6] Curiel, I., Cooperative combinatorial games, in Chinchuluun A., Pardalos P.M., Migdalas A., Pitsoulis L., Pareto Optimality, Game Theory And Equilibria, Springer Optimization and Its Applications, 17, Springer, New York, (2008).
  • [7] Bhuiyan, B. A., An Overview of game theory and some applications, Philosophy and Progress, 111–128, (2018).
  • [8] DU, J., XU, X., LI, H., ZHOU, X., & HAN, R., Playing prisoner’s dilemma with quantum rules, Fluctuation and Noise Letters, 02(04), R189–R203, (2002).
  • [9] Vives, X., Duopoly information equilibrium: Cournot and bertrand, Journal of Economic Theory, 34(1), 71–94, (1984).
  • [10] Karabacak, H., Herkes için oyun teorisi: oyunlar, kavramlar, stratejileri, Seçkin Yayıncılık, (2016).
  • [11] Shapiro, C., Chapter 6 Theories of oligopoly behavior, Handbook of Industrial Organization, Volume 1, 329–414, (1989).
  • [12] Özdamar, Ö., Oyun kuramının uluslararası ilişkiler yazınına katkıları, Uluslararası İlişkiler, 15, 33-66, (2007).
  • [13] Güner, S., Oyun kuramı ve uluslararası politika, METU Studies in Development, 163-180, (2003).
  • [14] Weese, E., Political mergers as coalition formation, Working Papers 997, Economic Growth Center, Yale University, (2011)
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Haşim Çapın 0000-0001-8168-5360

Şükran Konca 0000-0003-4019-958X

Publication Date January 31, 2023
Submission Date July 2, 2022
Acceptance Date October 26, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Çapın, H., & Konca, Ş. (2023). A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY. Journal of Universal Mathematics, 6(1), 105-113. https://doi.org/10.33773/jum.1139872
AMA Çapın H, Konca Ş. A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY. JUM. January 2023;6(1):105-113. doi:10.33773/jum.1139872
Chicago Çapın, Haşim, and Şükran Konca. “A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY”. Journal of Universal Mathematics 6, no. 1 (January 2023): 105-13. https://doi.org/10.33773/jum.1139872.
EndNote Çapın H, Konca Ş (January 1, 2023) A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY. Journal of Universal Mathematics 6 1 105–113.
IEEE H. Çapın and Ş. Konca, “A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY”, JUM, vol. 6, no. 1, pp. 105–113, 2023, doi: 10.33773/jum.1139872.
ISNAD Çapın, Haşim - Konca, Şükran. “A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY”. Journal of Universal Mathematics 6/1 (January 2023), 105-113. https://doi.org/10.33773/jum.1139872.
JAMA Çapın H, Konca Ş. A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY. JUM. 2023;6:105–113.
MLA Çapın, Haşim and Şükran Konca. “A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY”. Journal of Universal Mathematics, vol. 6, no. 1, 2023, pp. 105-13, doi:10.33773/jum.1139872.
Vancouver Çapın H, Konca Ş. A STUDY ON MODELING OF CONFLICT AND AGREEMENT WITH GAME THEORY. JUM. 2023;6(1):105-13.