Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 1, 49 - 54, 31.01.2023
https://doi.org/10.33773/jum.1165977

Abstract

References

  • Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), Nauka, Moscow, (1985). Translation: VNU Science Press, Utrecht, (1987).
  • P.M. Cohn, Subalgebras of free associative algebras, Proc. London Math. Soc. 14(3), pp. 618-632 (1964).
  • V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120(4), pp. 1021-1028 (1994).
  • V. Drensky, {\c S}. F{\i}nd{\i}k, N. {\c S}. \"O{\u g}\"u{\c s}l\"u, Symmetric polynomials in the free metabelian Lie algebras, Mediterranean Journal of Mathematics 17(5), pp. 1-11 (2020).
  • {\c S}. F{\i}nd{\i}k, N. {\c S}. \"O{\u g}\"u{\c s}l\"u, Palindromes in the free metabelian Lie algebras, Internat. J. Algebra Comput. 29(5), pp. 885-891 (2019).
  • M.C. Wolf, Symmetric functions of non-commutative elements, Duke Math. J. 2(4), pp. 626-637 (1936).

ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS

Year 2023, Volume: 6 Issue: 1, 49 - 54, 31.01.2023
https://doi.org/10.33773/jum.1165977

Abstract

Let $L_{n}$ be the free Lie algebra of rank $n$ over a field $K$ of characteristic zero, $L_{n,c}=L_{n}/(L_{n}''+\gamma_{c+1}(L_{n}))$ be the free metabelian nilpotent of class $c$ Lie algebra, and $F_{n}=L_{n}/L_{n}''$ be the free metabelian Lie algebra generated by $x_1,\ldots,x_n$ over a field $K$ of characteristic zero.
We call a polynomial $p(X_n)$ in these Lie algebras {\it symmetric} if $p(x_1,\ldots,x_n)=p(x_{\pi(1)},\ldots,x_{\pi(n)})$ for each element of the symmetric group $S_n$. The sets $L_n^{S_n}$, $F_n^{S_n}$, and $L_{n,c}^{S_n}$ of symmetric polynomials coincides with the algebras of invariants of the group $S_n$ in $L_{n}$, $F_{n}$, and $L_{n,c}$, respectively. We determine the groups $\text{\rm Inn}(L_{n,c}^{S_n})\cap \text{\rm Inn}(L_{n,c})$ and $\text{\rm Inn}(F_{n}^{S_n})\cap \text{\rm Inn}(F_{n})$ of inner automorphisms of the algebras $L_{n,c}^{S_n}$ and $F_{n}^{S_n}$ in the groups $\text{\rm Inn}(L_{n,c})$ and $\text{\rm Inn}(F_{n})$, respectively. In particular, we obtain the descriptions of the groups $\text{\rm Aut}(L_{2}^{S_2})\cap \text{\rm Aut}(L_{2})$ and $\text{\rm Aut}(F_{2}^{S_2})\cap \text{\rm Aut}(F_{2})$ of automorphisms of the algebras $L_{2}^{S_2}$ and $F_{2}^{S_2}$ in the groups $\text{\rm Aut}(L_{2})$ and $\text{\rm Aut}(F_{2})$, respectively.

References

  • Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), Nauka, Moscow, (1985). Translation: VNU Science Press, Utrecht, (1987).
  • P.M. Cohn, Subalgebras of free associative algebras, Proc. London Math. Soc. 14(3), pp. 618-632 (1964).
  • V. Drensky, Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc. 120(4), pp. 1021-1028 (1994).
  • V. Drensky, {\c S}. F{\i}nd{\i}k, N. {\c S}. \"O{\u g}\"u{\c s}l\"u, Symmetric polynomials in the free metabelian Lie algebras, Mediterranean Journal of Mathematics 17(5), pp. 1-11 (2020).
  • {\c S}. F{\i}nd{\i}k, N. {\c S}. \"O{\u g}\"u{\c s}l\"u, Palindromes in the free metabelian Lie algebras, Internat. J. Algebra Comput. 29(5), pp. 885-891 (2019).
  • M.C. Wolf, Symmetric functions of non-commutative elements, Duke Math. J. 2(4), pp. 626-637 (1936).
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Şehmus Fındık 0000-0001-5717-4413

Nazar Şahin Öğüşlü 0000-0001-7407-9178

Publication Date January 31, 2023
Submission Date August 23, 2022
Acceptance Date October 26, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Fındık, Ş., & Öğüşlü, N. Ş. (2023). ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS. Journal of Universal Mathematics, 6(1), 49-54. https://doi.org/10.33773/jum.1165977
AMA Fındık Ş, Öğüşlü NŞ. ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS. JUM. January 2023;6(1):49-54. doi:10.33773/jum.1165977
Chicago Fındık, Şehmus, and Nazar Şahin Öğüşlü. “ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS”. Journal of Universal Mathematics 6, no. 1 (January 2023): 49-54. https://doi.org/10.33773/jum.1165977.
EndNote Fındık Ş, Öğüşlü NŞ (January 1, 2023) ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS. Journal of Universal Mathematics 6 1 49–54.
IEEE Ş. Fındık and N. Ş. Öğüşlü, “ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS”, JUM, vol. 6, no. 1, pp. 49–54, 2023, doi: 10.33773/jum.1165977.
ISNAD Fındık, Şehmus - Öğüşlü, Nazar Şahin. “ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS”. Journal of Universal Mathematics 6/1 (January 2023), 49-54. https://doi.org/10.33773/jum.1165977.
JAMA Fındık Ş, Öğüşlü NŞ. ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS. JUM. 2023;6:49–54.
MLA Fındık, Şehmus and Nazar Şahin Öğüşlü. “ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS”. Journal of Universal Mathematics, vol. 6, no. 1, 2023, pp. 49-54, doi:10.33773/jum.1165977.
Vancouver Fındık Ş, Öğüşlü NŞ. ON AUTOMORPHISMS OF LIE ALGEBRA OF SYMMETRIC POLYNOMIALS. JUM. 2023;6(1):49-54.