Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 1, 37 - 47, 31.01.2024
https://doi.org/10.33773/jum.1408506

Abstract

References

  • A. E. Bashirov, M. R\i za, On Complex multiplicative differentiation, TWMS J. App. Eng. Math. Vol.1, No.1, pp.75-85 (2011).
  • A. E. Bashirov, E. Mısırlı , Y. Tandoğdu, A. Ozyapıcı , On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. Vol.26, No.4, pp.425-438 (2011).
  • A. E. Bashirov, E. M. Kurpınar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. Vol.337, pp.36-48 (2008).
  • K. Boruah and B. Hazarika, Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces, J. Math. Anal. Appl., Vol.449, No.2, pp.1265-1285 (2017).
  • K. Boruah and B. Hazarika, Some basic properties of G-Calculus and its applications in numerical analysis, arXiv:1607.07749v1 (2016).
  • A. F. Çakmak, F. Başar, On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. Art. ID 932734, 12 pages (2012).
  • E. Misirli and Y. Gurefe, Multiplicative Adams Bashforth--Moulton methods, Numer. Algor. Vol.57, pp.425-439 (2011).
  • A. F. Çakmak, F. Başar, Some sequence spaces and matrix transformations in multiplicative sense, TWMS J. Pure Appl. Math. Vol.6, No.1, pp.27-37 (2015).
  • D. Campbell, Multiplicative Calculus and Student Projects, Vol.9, No.4, pp.327-333 (1999).
  • M. Coco, Multiplicative Calculus, Lynchburg College, (2009).
  • M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts (1972).
  • M. Grossman, Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts (1983).
  • M. Grossman, An Introduction to non-Newtonian calculus, Int. J. Math. Educ. Sci. Technol. Vol.10, No.4, pp.525-528 (1979).
  • J. Grossman, M. Grossman, R. Katz, The First Systems of Weighted Differential and Integral Calculus, University of Michigan (1981).
  • J. Grossman, Meta-Calculus: Differential and Integral, University of Michigan (1981).
  • Y. Gurefe, Multiplicative Differential Equations and Its Applications, Ph.D. in Department of Mathematics (2013).
  • W.F. Samuelson, S.G. Mark, Managerial Economics, Seventh Edition (2012).
  • D. Stanley, A multiplicative calculus, Primus IX 4, pp.310-326 (1979).
  • S. Tekin, F. Başar, Certain Sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal. Article ID 739319, 11 pages (2013).
  • C. Türkmen and F. Başar, Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1. Vol.61, No.2, pp.17-34 (2012).
  • A. Uzer, Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl. Vol.60, pp.2725-2737 (2010).
  • K. Boruah and B. Hazarika, G-Calculus, TWMS J. App. Eng. Math. Vol.8, No.1, pp. 94-105 (2018).
  • S. Aslan, M. Bekar, Y. Yaylı, Geometric 3-space and multiplicative quaternions, International Journal 1 of Geometric Methods in Modern Physics, Vol.20, No.9 (2023).
  • S. Nurkan, K. İ. Gürgil, M. K. Karacan, Vector properties of geometric calculus, Math. Meth. Appl. Sci. pp.1-20 (2023).
  • H. Es, On The 1-Parameter Motions With Multiplicative Calculus, Journal of Science and Arts, Vol.2, No.59, (2022).

PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS

Year 2024, Volume: 7 Issue: 1, 37 - 47, 31.01.2024
https://doi.org/10.33773/jum.1408506

Abstract

In this study, pole points of motion, pole trajectories, velocities, accelerations and relations
between velocities and accelerations are obtained. In addition we gave some new theorems

References

  • A. E. Bashirov, M. R\i za, On Complex multiplicative differentiation, TWMS J. App. Eng. Math. Vol.1, No.1, pp.75-85 (2011).
  • A. E. Bashirov, E. Mısırlı , Y. Tandoğdu, A. Ozyapıcı , On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. Vol.26, No.4, pp.425-438 (2011).
  • A. E. Bashirov, E. M. Kurpınar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. Vol.337, pp.36-48 (2008).
  • K. Boruah and B. Hazarika, Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces, J. Math. Anal. Appl., Vol.449, No.2, pp.1265-1285 (2017).
  • K. Boruah and B. Hazarika, Some basic properties of G-Calculus and its applications in numerical analysis, arXiv:1607.07749v1 (2016).
  • A. F. Çakmak, F. Başar, On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. Art. ID 932734, 12 pages (2012).
  • E. Misirli and Y. Gurefe, Multiplicative Adams Bashforth--Moulton methods, Numer. Algor. Vol.57, pp.425-439 (2011).
  • A. F. Çakmak, F. Başar, Some sequence spaces and matrix transformations in multiplicative sense, TWMS J. Pure Appl. Math. Vol.6, No.1, pp.27-37 (2015).
  • D. Campbell, Multiplicative Calculus and Student Projects, Vol.9, No.4, pp.327-333 (1999).
  • M. Coco, Multiplicative Calculus, Lynchburg College, (2009).
  • M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts (1972).
  • M. Grossman, Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts (1983).
  • M. Grossman, An Introduction to non-Newtonian calculus, Int. J. Math. Educ. Sci. Technol. Vol.10, No.4, pp.525-528 (1979).
  • J. Grossman, M. Grossman, R. Katz, The First Systems of Weighted Differential and Integral Calculus, University of Michigan (1981).
  • J. Grossman, Meta-Calculus: Differential and Integral, University of Michigan (1981).
  • Y. Gurefe, Multiplicative Differential Equations and Its Applications, Ph.D. in Department of Mathematics (2013).
  • W.F. Samuelson, S.G. Mark, Managerial Economics, Seventh Edition (2012).
  • D. Stanley, A multiplicative calculus, Primus IX 4, pp.310-326 (1979).
  • S. Tekin, F. Başar, Certain Sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal. Article ID 739319, 11 pages (2013).
  • C. Türkmen and F. Başar, Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1. Vol.61, No.2, pp.17-34 (2012).
  • A. Uzer, Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl. Vol.60, pp.2725-2737 (2010).
  • K. Boruah and B. Hazarika, G-Calculus, TWMS J. App. Eng. Math. Vol.8, No.1, pp. 94-105 (2018).
  • S. Aslan, M. Bekar, Y. Yaylı, Geometric 3-space and multiplicative quaternions, International Journal 1 of Geometric Methods in Modern Physics, Vol.20, No.9 (2023).
  • S. Nurkan, K. İ. Gürgil, M. K. Karacan, Vector properties of geometric calculus, Math. Meth. Appl. Sci. pp.1-20 (2023).
  • H. Es, On The 1-Parameter Motions With Multiplicative Calculus, Journal of Science and Arts, Vol.2, No.59, (2022).
There are 25 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Hasan Es 0000-0002-7732-8173

Publication Date January 31, 2024
Submission Date December 22, 2023
Acceptance Date January 29, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Es, H. (2024). PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS. Journal of Universal Mathematics, 7(1), 37-47. https://doi.org/10.33773/jum.1408506
AMA Es H. PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS. JUM. January 2024;7(1):37-47. doi:10.33773/jum.1408506
Chicago Es, Hasan. “PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS”. Journal of Universal Mathematics 7, no. 1 (January 2024): 37-47. https://doi.org/10.33773/jum.1408506.
EndNote Es H (January 1, 2024) PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS. Journal of Universal Mathematics 7 1 37–47.
IEEE H. Es, “PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS”, JUM, vol. 7, no. 1, pp. 37–47, 2024, doi: 10.33773/jum.1408506.
ISNAD Es, Hasan. “PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS”. Journal of Universal Mathematics 7/1 (January 2024), 37-47. https://doi.org/10.33773/jum.1408506.
JAMA Es H. PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS. JUM. 2024;7:37–47.
MLA Es, Hasan. “PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS”. Journal of Universal Mathematics, vol. 7, no. 1, 2024, pp. 37-47, doi:10.33773/jum.1408506.
Vancouver Es H. PLANE KINEMATICS IN HOMOTHETIC MULTIPLICATIVE CALCULUS. JUM. 2024;7(1):37-4.