Research Article
BibTex RIS Cite

SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS

Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 31 - 43, 29.12.2024
https://doi.org/10.33773/jum.1504000

Abstract

In this paper, we investigate various types of convergence for sequences of functions and examine the relationships among these types. Our findings contribute to a deeper understanding of the structural properties of function sequences and their convergence behaviors.

References

  • E. Athanassiadou, A. Boccuto, X. Dimitriou and N. Papanastassiou, Ascoli-type theorems and ideal alpha-convergence, Filomat, Vol.26, No. 2, pp. 397-405 (2012).
  • E. Athanassiadou, C. Papachristodoulos and N. Papanastassiou, alpha and hyper alpha-convergence in function spaces, Q. and A. General Topology, Vol. 33, pp. 1-16 (2015).
  • R. Courant, Ueber eine Eigenschaft der Abbildungsfunktioen bei konformer Abbildung, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 101–109 (1914).
  • R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Analysis Exchange Vol. 29, No. 1, pp. 43–58. (2004).
  • S. Das, A. Ghosh, A Study on statistical versions of convergence of sequences of functions, Mathematica Slovaca, Vol. 72, No.2, pp. 443–458 (2022).
  • A. Ghosh. I-alpha-convergence and I-exhaustiveness of sequences of metric functions. Matematicki Vesnik, Vol.74, No.2, pp. 110-118 (2022).
  • V. Gregoriades, and N. Papanastassiou, The notion of exhaustiveness and Ascoli-type theorems, Topology and its Applications, Vol. 155, No. 10, pp. 1111-1128 (2008).
  • H. Hahn, Theorie der reellen Funktionen, Berlin, 1921.
  • N. Papanastassiou, A note on convergence of sequences of functions, Topology and its Applications, 275:107017 (2020).
  • W. Rudin, Principles of mathematical analysis (Vol. 3). New York: McGraw-hill (1964).
  • H. Schaefer, Stetige Konvergenz in allgemeinen topologischen Raumen, Arch. Math, Vol. 6, pp. 423–427 (1955).
  • S. Stoilov, Continuous convergence, Rev. Math. Pures Appl. 4 (1959).
Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 31 - 43, 29.12.2024
https://doi.org/10.33773/jum.1504000

Abstract

References

  • E. Athanassiadou, A. Boccuto, X. Dimitriou and N. Papanastassiou, Ascoli-type theorems and ideal alpha-convergence, Filomat, Vol.26, No. 2, pp. 397-405 (2012).
  • E. Athanassiadou, C. Papachristodoulos and N. Papanastassiou, alpha and hyper alpha-convergence in function spaces, Q. and A. General Topology, Vol. 33, pp. 1-16 (2015).
  • R. Courant, Ueber eine Eigenschaft der Abbildungsfunktioen bei konformer Abbildung, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 101–109 (1914).
  • R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Analysis Exchange Vol. 29, No. 1, pp. 43–58. (2004).
  • S. Das, A. Ghosh, A Study on statistical versions of convergence of sequences of functions, Mathematica Slovaca, Vol. 72, No.2, pp. 443–458 (2022).
  • A. Ghosh. I-alpha-convergence and I-exhaustiveness of sequences of metric functions. Matematicki Vesnik, Vol.74, No.2, pp. 110-118 (2022).
  • V. Gregoriades, and N. Papanastassiou, The notion of exhaustiveness and Ascoli-type theorems, Topology and its Applications, Vol. 155, No. 10, pp. 1111-1128 (2008).
  • H. Hahn, Theorie der reellen Funktionen, Berlin, 1921.
  • N. Papanastassiou, A note on convergence of sequences of functions, Topology and its Applications, 275:107017 (2020).
  • W. Rudin, Principles of mathematical analysis (Vol. 3). New York: McGraw-hill (1964).
  • H. Schaefer, Stetige Konvergenz in allgemeinen topologischen Raumen, Arch. Math, Vol. 6, pp. 423–427 (1955).
  • S. Stoilov, Continuous convergence, Rev. Math. Pures Appl. 4 (1959).
There are 12 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Article
Authors

Alper Erdem 0000-0001-8429-0612

Tuncay Tunç 0000-0002-3061-7197

Publication Date December 29, 2024
Submission Date June 24, 2024
Acceptance Date November 2, 2024
Published in Issue Year 2024 Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Cite

APA Erdem, A., & Tunç, T. (2024). SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 31-43. https://doi.org/10.33773/jum.1504000
AMA Erdem A, Tunç T. SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. JUM. December 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):31-43. doi:10.33773/jum.1504000
Chicago Erdem, Alper, and Tuncay Tunç. “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”. Journal of Universal Mathematics 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024): 31-43. https://doi.org/10.33773/jum.1504000.
EndNote Erdem A, Tunç T (December 1, 2024) SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 31–43.
IEEE A. Erdem and T. Tunç, “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”, JUM, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", pp. 31–43, 2024, doi: 10.33773/jum.1504000.
ISNAD Erdem, Alper - Tunç, Tuncay. “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024), 31-43. https://doi.org/10.33773/jum.1504000.
JAMA Erdem A, Tunç T. SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. JUM. 2024;7:31–43.
MLA Erdem, Alper and Tuncay Tunç. “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”. Journal of Universal Mathematics, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, pp. 31-43, doi:10.33773/jum.1504000.
Vancouver Erdem A, Tunç T. SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):31-43.