Research Article
BibTex RIS Cite

CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS

Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 10 - 22, 29.12.2024
https://doi.org/10.33773/jum.1546765

Abstract

This study used conformable derivatives to define the eigenvalue problems with two parameters and examined various associated spectral properties. Firstly, the conformable eigenvalue problems with two parameters were reduced to the simpler one parameter problems. Additionally, we focused on the orthogonality properties of eigenfunctions. Secondly, investigating the reality of eigenvalues is important to understand the physical relevance and practical usability of the considered eigenvalue problem. Finally, we examined integral relations, which explain important connections and relationships between different aspects of the problem.

References

  • T. Abdeljawad, On conformable fractional calculus, Journal of computational and Applied Mathematic, Vol.279, pp. 57-66 (2015).
  • B. P. Allahverdiev, E. Bairamov, E. Ugurlu, Eigenparameter dependent Sturm–Liouville problems in boundary conditions with transmission conditions, Journal of Mathematical Analysis and Applications, Vol.401, No.1, pp. 388-396 (2013).
  • B. P. Allahverdiev, H. Tuna, Y. Yalcinkaya, Conformable fractional Sturm‐Liouville equation, Mathematical Methods in the Applied Sciences, Vol.42, No.10, pp. 3508-3526 (2019).
  • M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm‐Liouville eigenvalue problems, Complexity, Vol.2017, No.1, pp. 3720471 (2017).
  • F. M. Arscott, Integral equations for ellipsoidal wave functions, The Quarterly Journal Of Mathematics, Vol.8, No.1, pp. 223--235 (1957).
  • F. M. Arscott, A New Treatment of the ellipsoidal wave equation, Proceedings Of The London Mathematical Society, Vol.3, No.1, pp. 21--50 (1959).
  • F. M. Arscott, Two-parameter eigenvalue problems in differential equations, Proceedings Of The London Mathematical Society, Vol.3, No.3, pp. 459-470 (1964).
  • F. V. Atkinson, A. B. Mingarelli, Multiparameter eigenvalue problems, New York: Academic Press, Vol.1, (1972).
  • E. Bairamov, Y. Aygar, G. B. Oznur, Scattering properties of eigenparameter-dependent impulsive Sturm–Liouville equations, Bulletin of the Malaysian Mathematical Sciences Society, Vol.43, pp. 2769-2781 (2020).
  • O. Cabri, K. R. Mamedov, On the riesz basisness of root functions of a sturm–liouville operator with conjugate conditions, Lobachevskii Journal of Mathematics, Vol.41, pp. 1784-1790 (2020).
  • S. Goktas, H. Koyunbakan, T. Gulsen, Inverse nodal problem for polynomial pencil of Sturm‐Liouville operator, Mathematical Methods in the Applied Sciences, Vol.41, No.17, pp. 7576-7582 (2018).
Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 10 - 22, 29.12.2024
https://doi.org/10.33773/jum.1546765

Abstract

References

  • T. Abdeljawad, On conformable fractional calculus, Journal of computational and Applied Mathematic, Vol.279, pp. 57-66 (2015).
  • B. P. Allahverdiev, E. Bairamov, E. Ugurlu, Eigenparameter dependent Sturm–Liouville problems in boundary conditions with transmission conditions, Journal of Mathematical Analysis and Applications, Vol.401, No.1, pp. 388-396 (2013).
  • B. P. Allahverdiev, H. Tuna, Y. Yalcinkaya, Conformable fractional Sturm‐Liouville equation, Mathematical Methods in the Applied Sciences, Vol.42, No.10, pp. 3508-3526 (2019).
  • M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm‐Liouville eigenvalue problems, Complexity, Vol.2017, No.1, pp. 3720471 (2017).
  • F. M. Arscott, Integral equations for ellipsoidal wave functions, The Quarterly Journal Of Mathematics, Vol.8, No.1, pp. 223--235 (1957).
  • F. M. Arscott, A New Treatment of the ellipsoidal wave equation, Proceedings Of The London Mathematical Society, Vol.3, No.1, pp. 21--50 (1959).
  • F. M. Arscott, Two-parameter eigenvalue problems in differential equations, Proceedings Of The London Mathematical Society, Vol.3, No.3, pp. 459-470 (1964).
  • F. V. Atkinson, A. B. Mingarelli, Multiparameter eigenvalue problems, New York: Academic Press, Vol.1, (1972).
  • E. Bairamov, Y. Aygar, G. B. Oznur, Scattering properties of eigenparameter-dependent impulsive Sturm–Liouville equations, Bulletin of the Malaysian Mathematical Sciences Society, Vol.43, pp. 2769-2781 (2020).
  • O. Cabri, K. R. Mamedov, On the riesz basisness of root functions of a sturm–liouville operator with conjugate conditions, Lobachevskii Journal of Mathematics, Vol.41, pp. 1784-1790 (2020).
  • S. Goktas, H. Koyunbakan, T. Gulsen, Inverse nodal problem for polynomial pencil of Sturm‐Liouville operator, Mathematical Methods in the Applied Sciences, Vol.41, No.17, pp. 7576-7582 (2018).
There are 11 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems, Partial Differential Equations
Journal Section Research Article
Authors

Aslı Öner 0000-0002-4799-9574

Sertaç Göktaş 0000-0001-7842-6309

Büşra Barut 0009-0007-7033-8954

Publication Date December 29, 2024
Submission Date September 10, 2024
Acceptance Date November 30, 2024
Published in Issue Year 2024 Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Cite

APA Öner, A., Göktaş, S., & Barut, B. (2024). CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 10-22. https://doi.org/10.33773/jum.1546765
AMA Öner A, Göktaş S, Barut B. CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS. JUM. December 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):10-22. doi:10.33773/jum.1546765
Chicago Öner, Aslı, Sertaç Göktaş, and Büşra Barut. “CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS”. Journal of Universal Mathematics 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024): 10-22. https://doi.org/10.33773/jum.1546765.
EndNote Öner A, Göktaş S, Barut B (December 1, 2024) CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 10–22.
IEEE A. Öner, S. Göktaş, and B. Barut, “CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS”, JUM, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", pp. 10–22, 2024, doi: 10.33773/jum.1546765.
ISNAD Öner, Aslı et al. “CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024), 10-22. https://doi.org/10.33773/jum.1546765.
JAMA Öner A, Göktaş S, Barut B. CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS. JUM. 2024;7:10–22.
MLA Öner, Aslı et al. “CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS”. Journal of Universal Mathematics, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, pp. 10-22, doi:10.33773/jum.1546765.
Vancouver Öner A, Göktaş S, Barut B. CONFORMABLE EIGENVALUE PROBLEMS WITH TWO PARAMETERS. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):10-22.