Research Article
BibTex RIS Cite

GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES

Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 158 - 174, 29.12.2024
https://doi.org/10.33773/jum.1558660

Abstract

In this paper, we obtain ^{ND}E_{T} for null Darboux frame on timelike surface and derive V-magnetic curves for null Darboux frame on a timelike surface in the T-lines direction. Also, we present ^{¹GD}E_{T}, ^{^{²GD}}E_{T} for 1GDF, 2GDF on lightlike surfaces in the tangential direction. Later, we present μ, U-magnetic curves for 1GDF on lightlike surfaces in the T-lines direction. We obtain geometric phase in μ-lines direction for 1GDF on lightlike surface. Finally, we obtain μ,U-magnetic curves in the μ,U-lines direction for 1GDF on lightlike surfaces.

References

  • M.V. Berrry, Quantal Phase Factors Accompanying Adiabatic Changes, Mathematical and Physical Sciences, Vol.392, No. 1, pp. 45-57 (1984).
  • R. Dandoloff, W.J. Zakrzewski, Parallel Transport Along A Space Curve And Related Phases, Journal of Physics A: Mathematical and General, Vol. 22, No. 11, pp. L461 (1989).
  • E.M. Frins, W. Dultz, Rotation Of The Polarization Plane In Optical Fibers, J. Lightwave Technol, Vol. 15, No.1, pp. 144-147 (1997).
  • D.W. Yoon, N.G. Ertug, Geometric Phases For Three Cases Of The Electric Field With New Type Bishop Frame in R1-3. Int. J. Geom. Methods Mod. Phys., Vol.19, No.8, pp. 2250115 (2022).
  • N. Mukunda , R. Simon, Quantum Kinematic Approach To The Geometric Phases, Ann. Physics, Vol.228, No., pp. 205-268 (1993).
  • N.G. Ertug, D.W. Yoon, The Evolution Of The Electric Field Along Optical Fiber With Respect To The Type-2 And 3 Pafs In Minkowski 3-Space, Tamkang Journal of Mathematics, Vol. 55, No.2, pp. 113-128 (2024).
  • T. Korpinar, R.C. Demirkol, Berry Phase Of The Linearly Polarize Light Wave Along An Optical Fiber And Its Electromagnetic Curves Via Quasi Adapted Frame, Waves in Random and Complex Media, Vol.32, No.3 ,pp.1497-1516 (2022).
  • T. Korpinar, Z. Korpinar, Hybrid Electric And Magnetic -Phase With Landau Lifshitz Approach, Waves Random Complex Media, Vol.32, No.3, pp. 1497-1516 (2022).
  • N.G. Ertug, The Evolution Of An Electric Field, Hasimoto Surfaces And Three Differential Formulas With The New Frame in R1-3, Optik, Vol. 272, pp. 170217 (2023).
  • R. Balakrishnan, Space Curve Evolution, Geometric Phase And Solitons, Theoretical and Mathematical Physics, Vol. 99, No.2, pp.172-176 (1994).
Year 2024, Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 158 - 174, 29.12.2024
https://doi.org/10.33773/jum.1558660

Abstract

References

  • M.V. Berrry, Quantal Phase Factors Accompanying Adiabatic Changes, Mathematical and Physical Sciences, Vol.392, No. 1, pp. 45-57 (1984).
  • R. Dandoloff, W.J. Zakrzewski, Parallel Transport Along A Space Curve And Related Phases, Journal of Physics A: Mathematical and General, Vol. 22, No. 11, pp. L461 (1989).
  • E.M. Frins, W. Dultz, Rotation Of The Polarization Plane In Optical Fibers, J. Lightwave Technol, Vol. 15, No.1, pp. 144-147 (1997).
  • D.W. Yoon, N.G. Ertug, Geometric Phases For Three Cases Of The Electric Field With New Type Bishop Frame in R1-3. Int. J. Geom. Methods Mod. Phys., Vol.19, No.8, pp. 2250115 (2022).
  • N. Mukunda , R. Simon, Quantum Kinematic Approach To The Geometric Phases, Ann. Physics, Vol.228, No., pp. 205-268 (1993).
  • N.G. Ertug, D.W. Yoon, The Evolution Of The Electric Field Along Optical Fiber With Respect To The Type-2 And 3 Pafs In Minkowski 3-Space, Tamkang Journal of Mathematics, Vol. 55, No.2, pp. 113-128 (2024).
  • T. Korpinar, R.C. Demirkol, Berry Phase Of The Linearly Polarize Light Wave Along An Optical Fiber And Its Electromagnetic Curves Via Quasi Adapted Frame, Waves in Random and Complex Media, Vol.32, No.3 ,pp.1497-1516 (2022).
  • T. Korpinar, Z. Korpinar, Hybrid Electric And Magnetic -Phase With Landau Lifshitz Approach, Waves Random Complex Media, Vol.32, No.3, pp. 1497-1516 (2022).
  • N.G. Ertug, The Evolution Of An Electric Field, Hasimoto Surfaces And Three Differential Formulas With The New Frame in R1-3, Optik, Vol. 272, pp. 170217 (2023).
  • R. Balakrishnan, Space Curve Evolution, Geometric Phase And Solitons, Theoretical and Mathematical Physics, Vol. 99, No.2, pp.172-176 (1994).
There are 10 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Şerife Nevin Gürbüz 0000-0003-3959-1779

Publication Date December 29, 2024
Submission Date September 30, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2024 Volume: 7 Issue: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Cite

APA Gürbüz, Ş. N. (2024). GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 158-174. https://doi.org/10.33773/jum.1558660
AMA Gürbüz ŞN. GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES. JUM. December 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):158-174. doi:10.33773/jum.1558660
Chicago Gürbüz, Şerife Nevin. “GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES”. Journal of Universal Mathematics 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024): 158-74. https://doi.org/10.33773/jum.1558660.
EndNote Gürbüz ŞN (December 1, 2024) GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 158–174.
IEEE Ş. N. Gürbüz, “GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES”, JUM, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", pp. 158–174, 2024, doi: 10.33773/jum.1558660.
ISNAD Gürbüz, Şerife Nevin. “GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (December 2024), 158-174. https://doi.org/10.33773/jum.1558660.
JAMA Gürbüz ŞN. GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES. JUM. 2024;7:158–174.
MLA Gürbüz, Şerife Nevin. “GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES”. Journal of Universal Mathematics, vol. 7, no. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, pp. 158-74, doi:10.33773/jum.1558660.
Vancouver Gürbüz ŞN. GEOMETRIC PHASES, MAGNETIC CURVES FOR DARBOUX FRAMES ON LIGHTLIKE AND TIMELIKE SURFACES. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):158-74.