Research Article
BibTex RIS Cite

PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS

Year 2024, Volume: 7 Issue: 2, 64 - 74, 31.07.2024
https://doi.org/10.33773/jum.1411844

Abstract

In this study, Lorentzian plane homothetic multiplicative calculus kinematics is discussed.
Lorentzian plane homothetic multiplicative calculus movement, the pole points of a point X relative to
the moving and fixed plane are discussed. In this motion, the velocities and accelerations of a point
X are obtained. In this motion, the relations between the velocities and accelerations of a point X are
obtained. In addition, new theorems and results are given.

References

  • V. Volterra, B. Hostinsky, Operations Innitesimales Lineares. Herman, Paris (1938).
  • D. Aniszewska, Multiplicative Runge-Kutta Methods. Nonlinear Dynamics Vol.50, pp.262-272 (2007).
  • W. Kasprzak, B. Lysik, M. Rybaczuk, Dimensions, Invariants Models and Fractals, Ukrainian Society on Fracture Mechanics, Spolom, Wroclaw-Lviv, Poland (2004).
  • M. Rybaczuk, A. Kedzia, W. Zielinski, The concepts of physical and fractional dimensions 2. The differential calculus in dimensional spaces, Chaos Solitons Fractals Vol.12, pp.2537-2552 (2001).
  • M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts (1972).
  • D. Stanley, A multiplicative calculus, Primus IX, Vol.4, pp.310-326 (1999).
  • A. E. Bashirov, E. M. Kurpınar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. Vol.337, pp.36-48 (2008).
  • S. Aslan, M. Bekar, Y. Yaylı, Geometric 3-space and multiplicative quaternions, International Journal 1 of Geometric Methods in Modern Physics, Vol.20, No.9 (2023).
  • S. Nurkan, K., I. Gürgil, M. K., Karacan, Vector properties of geometric calculus, Math. Meth. Appl. Sci., pp.1-20 (2023).
  • H. Es, On The 1-Parameter Motions With Multiplicative Calculus, Journal of Science and Arts, Vol.2, No.59 (2022).
  • A. E. Bashirov, M. Rıza, On Complex multiplicative differentiation, TWMS J. App. Eng. Math. Vol.1, No.1, pp.75-85 (2011).
  • A. E. Bashirov, E. Mısırlı, Y. Tandoğdu, A. Ozyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. Vol.26, No.4, pp.425-438 (2011).
  • A. E. Bashirov, E. M. Kurpınar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. Vol.337, pp.36-48 (2008).
  • K. Boruah and B. Hazarika, Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces, arXiv:1603.09479v1 (2016).
  • K. Boruah and B. Hazarika, Some basic properties of G-Calculus and its applications in numerical analysis, arXiv:1607.07749v1(2016).
  • A. F. Çakmak, F. Başar, On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. 2012, Art. ID 932734, 12 pages (2012).
  • E. Misirli and Y. Gurefe, Multiplicative Adams BashfortMoulton methods, Numer Algor, Vol.57, pp.425-439(2011).
  • A. F. Çakmak, F. Başar, Some sequence spaces and matrix transformations in multiplicative sense, TWMS J. Pure Appl. Math. Vol.6, No.1, pp.27-37 (2015).
  • D. Campbell, Multiplicative Calculus and Student Projects, Vol.9, No.4, pp.327-333 (1999)
  • M. Coco, Multiplicative Calculus, Lynchburg College, Vol.9, No.4, pp.327-333 (2009).
  • M. Grossman, Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts (1983).
  • M. Grossman, An Introduction to non-Newtonian calculus, Int. J. Math. Educ. Sci. Technol., Vol.10, No.4, pp.525-528 (1979).
  • J. Grossman, M. Grossman, R. Katz, The First Systems of Weighted Differential and Integral Calculus, University of Michigan (1981).
  • J. Grossman, Meta-Calculus: Differential and Integral, University of Michigan (1981).
  • Y. Gurefe, Multiplicative Differential Equations and Its Applications, Ph.D. in Department of Mathematics (2013).
  • W. F. Samuelson, S.G. Mark, Managerial Economics, Seventh Edition (2012).
  • S. Tekin, F. Başar, Certain Sequence spaces over the non-Newtonian complexeld, Abstr. Appl. Anal. Article ID 739319, 11 pages (2013).
  • C. Türkmen and F. Başar, Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1., Vol.61, No.2, pp.17-34 (2012).
  • A. Uzer, Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl. Vol.60, pp.2725-2737 (2010).
  • K. Boruah and B. Hazarika, G-Calculus, TWMS J. App. Eng. Math., Vol.8, No.1, pp.94-105 (2018)
Year 2024, Volume: 7 Issue: 2, 64 - 74, 31.07.2024
https://doi.org/10.33773/jum.1411844

Abstract

References

  • V. Volterra, B. Hostinsky, Operations Innitesimales Lineares. Herman, Paris (1938).
  • D. Aniszewska, Multiplicative Runge-Kutta Methods. Nonlinear Dynamics Vol.50, pp.262-272 (2007).
  • W. Kasprzak, B. Lysik, M. Rybaczuk, Dimensions, Invariants Models and Fractals, Ukrainian Society on Fracture Mechanics, Spolom, Wroclaw-Lviv, Poland (2004).
  • M. Rybaczuk, A. Kedzia, W. Zielinski, The concepts of physical and fractional dimensions 2. The differential calculus in dimensional spaces, Chaos Solitons Fractals Vol.12, pp.2537-2552 (2001).
  • M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts (1972).
  • D. Stanley, A multiplicative calculus, Primus IX, Vol.4, pp.310-326 (1999).
  • A. E. Bashirov, E. M. Kurpınar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. Vol.337, pp.36-48 (2008).
  • S. Aslan, M. Bekar, Y. Yaylı, Geometric 3-space and multiplicative quaternions, International Journal 1 of Geometric Methods in Modern Physics, Vol.20, No.9 (2023).
  • S. Nurkan, K., I. Gürgil, M. K., Karacan, Vector properties of geometric calculus, Math. Meth. Appl. Sci., pp.1-20 (2023).
  • H. Es, On The 1-Parameter Motions With Multiplicative Calculus, Journal of Science and Arts, Vol.2, No.59 (2022).
  • A. E. Bashirov, M. Rıza, On Complex multiplicative differentiation, TWMS J. App. Eng. Math. Vol.1, No.1, pp.75-85 (2011).
  • A. E. Bashirov, E. Mısırlı, Y. Tandoğdu, A. Ozyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. Vol.26, No.4, pp.425-438 (2011).
  • A. E. Bashirov, E. M. Kurpınar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. Vol.337, pp.36-48 (2008).
  • K. Boruah and B. Hazarika, Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces, arXiv:1603.09479v1 (2016).
  • K. Boruah and B. Hazarika, Some basic properties of G-Calculus and its applications in numerical analysis, arXiv:1607.07749v1(2016).
  • A. F. Çakmak, F. Başar, On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. 2012, Art. ID 932734, 12 pages (2012).
  • E. Misirli and Y. Gurefe, Multiplicative Adams BashfortMoulton methods, Numer Algor, Vol.57, pp.425-439(2011).
  • A. F. Çakmak, F. Başar, Some sequence spaces and matrix transformations in multiplicative sense, TWMS J. Pure Appl. Math. Vol.6, No.1, pp.27-37 (2015).
  • D. Campbell, Multiplicative Calculus and Student Projects, Vol.9, No.4, pp.327-333 (1999)
  • M. Coco, Multiplicative Calculus, Lynchburg College, Vol.9, No.4, pp.327-333 (2009).
  • M. Grossman, Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts (1983).
  • M. Grossman, An Introduction to non-Newtonian calculus, Int. J. Math. Educ. Sci. Technol., Vol.10, No.4, pp.525-528 (1979).
  • J. Grossman, M. Grossman, R. Katz, The First Systems of Weighted Differential and Integral Calculus, University of Michigan (1981).
  • J. Grossman, Meta-Calculus: Differential and Integral, University of Michigan (1981).
  • Y. Gurefe, Multiplicative Differential Equations and Its Applications, Ph.D. in Department of Mathematics (2013).
  • W. F. Samuelson, S.G. Mark, Managerial Economics, Seventh Edition (2012).
  • S. Tekin, F. Başar, Certain Sequence spaces over the non-Newtonian complexeld, Abstr. Appl. Anal. Article ID 739319, 11 pages (2013).
  • C. Türkmen and F. Başar, Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1., Vol.61, No.2, pp.17-34 (2012).
  • A. Uzer, Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl. Vol.60, pp.2725-2737 (2010).
  • K. Boruah and B. Hazarika, G-Calculus, TWMS J. App. Eng. Math., Vol.8, No.1, pp.94-105 (2018)
There are 30 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry, Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Hasan Es 0000-0002-7732-8173

Publication Date July 31, 2024
Submission Date December 29, 2023
Acceptance Date January 31, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Es, H. (2024). PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS. Journal of Universal Mathematics, 7(2), 64-74. https://doi.org/10.33773/jum.1411844
AMA Es H. PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS. JUM. July 2024;7(2):64-74. doi:10.33773/jum.1411844
Chicago Es, Hasan. “PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS”. Journal of Universal Mathematics 7, no. 2 (July 2024): 64-74. https://doi.org/10.33773/jum.1411844.
EndNote Es H (July 1, 2024) PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS. Journal of Universal Mathematics 7 2 64–74.
IEEE H. Es, “PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS”, JUM, vol. 7, no. 2, pp. 64–74, 2024, doi: 10.33773/jum.1411844.
ISNAD Es, Hasan. “PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS”. Journal of Universal Mathematics 7/2 (July 2024), 64-74. https://doi.org/10.33773/jum.1411844.
JAMA Es H. PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS. JUM. 2024;7:64–74.
MLA Es, Hasan. “PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS”. Journal of Universal Mathematics, vol. 7, no. 2, 2024, pp. 64-74, doi:10.33773/jum.1411844.
Vancouver Es H. PLANE KINEMATICS IN LORENTZIAN HOMOTHETIC MULTIPLICATIVE CALCULUS. JUM. 2024;7(2):64-7.